Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spectral Geometry of Higher Categories

Objective

The overarching goal of this project is to reveal and systematically study the geometry of important categories in homotopy theory, algebraic geometry, and representation theory. To this end, we will introduce and develop the framework of higher Zariski geometry in which commutative rings are replaced by ring-like categories as the fundamental objects. The resulting theory simultaneously generalizes modern algebraic geometry, derived algebraic geometry as studied by Lurie and Toën--Vezzosi, as well as Balmer's tensor triangular geometry, while introducing entirely new global objects and methods. In particular, it provides a canonical spectral decomposition of a large class of higher categories over their Balmer spectrum, which is then used to produce powerful new tools to tackle some of the most important conjectures in their respective fields: Firstly, we will construct a higher analogue of the étale topology and étale homotopy types for such categories, giving rise to refined computational tools via descent. This machinery will be applied to modular representation theory to give a complete description of the group of endotrivial modules for any finite group and any field, extending the celebrated work of Carlson--Thévenaz and completing a program that began about 50 years ago. Secondly, we will introduce a categorical analogue of the Beilinson--Parshin adèles, in particular bringing to bear techniques from the point-set topology of spectral spaces. Applications include significant progress on Greenlees' conjecture on algebraic models for G-equivariant cohomology for a general compact Lie group G, which has remained open for more than 20 years. Thirdly, building on our earlier work on higher ultraproducts, we will study compactifications of categories and plan to combine these with recent advances in arithmetic geometry to make progress on the rational part of Hopkins' chromatic splitting conjecture, one of the most important open problems in homotopy theory.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0