Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Spectral Geometry of Higher Categories

Ziel

The overarching goal of this project is to reveal and systematically study the geometry of important categories in homotopy theory, algebraic geometry, and representation theory. To this end, we will introduce and develop the framework of higher Zariski geometry in which commutative rings are replaced by ring-like categories as the fundamental objects. The resulting theory simultaneously generalizes modern algebraic geometry, derived algebraic geometry as studied by Lurie and Toën--Vezzosi, as well as Balmer's tensor triangular geometry, while introducing entirely new global objects and methods. In particular, it provides a canonical spectral decomposition of a large class of higher categories over their Balmer spectrum, which is then used to produce powerful new tools to tackle some of the most important conjectures in their respective fields: Firstly, we will construct a higher analogue of the étale topology and étale homotopy types for such categories, giving rise to refined computational tools via descent. This machinery will be applied to modular representation theory to give a complete description of the group of endotrivial modules for any finite group and any field, extending the celebrated work of Carlson--Thévenaz and completing a program that began about 50 years ago. Secondly, we will introduce a categorical analogue of the Beilinson--Parshin adèles, in particular bringing to bear techniques from the point-set topology of spectral spaces. Applications include significant progress on Greenlees' conjecture on algebraic models for G-equivariant cohomology for a general compact Lie group G, which has remained open for more than 20 years. Thirdly, building on our earlier work on higher ultraproducts, we will study compactifications of categories and plan to combine these with recent advances in arithmetic geometry to make progress on the rational part of Hopkins' chromatic splitting conjecture, one of the most important open problems in homotopy theory.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2021-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 500 000,00
Adresse
HOFGARTENSTRASSE 8
80539 MUNCHEN
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 500 000,00

Begünstigte (1)

Mein Booklet 0 0