Project description
New theories for polynomial equations for analysis of complex biochemical models
Many biological and chemical processes are carried out via extensive biochemical reaction networks. These networks include multiple reactions involving the interconversion and transformation of chemical species interrelated in complex and often largely unknown ways. Models are our best way of gaining insight for basic understanding and designing networks for specific applications. One type of models of biochemical reaction networks utilise parametrised systems of polynomial equations, but their proper analysis is challenging. The EU-funded POSALG project will develop novel mathematical foundations within applied algebra to study parametrised polynomial equations in general, and will apply the new theory to the analysis of models of reaction networks.
Objective
Many real-world problems are reduced to the study of polynomial equations in the non-negative orthant, and this is in particular the case for models of the abundance of the species in a biochemical reaction network. The polynomials associated with realistic models are huge, with many parameters and variables, making qualitative analyses, without fixing parameter values, challenging.
This results in a mismatch between the needs in biology and the available mathematical tools. The driving aim of this proposal is to narrow the gap by developing novel mathematical theory within applied algebra to ultimately advance in the systematic analysis of biochemical models.
Motivated by specific applications in the field of reaction networks, we consider parametrized systems of polynomial equations, and address questions regarding the number of positive solutions, connected components of semi-algebraic sets, and signs of vectors. Specifically, we (1) pursue a generalization of the Descartes' rule of signs to hypersurfaces, to bound the number of negative and of positive connected components of the complement of a hypersurface in the positive orthant, in terms of the signs of the coefficients of the hypersurface; (2) follow a new strategy to prove the Global Attractor Conjecture; and, (3) develop new results to count the number of positive solutions or find parametrizations.
The novelty and strength of this proposal resides in the interplay between the advance in the analysis of reaction networks and the development of theory in real algebraic geometry. The research problems are studied in full generality for arbitrary parametrized polynomial systems, but each question has a well-defined purpose, directed to the ultimate goal of having a scanning tool to automatically analyze the models used in systems and synthetic biology. Therefore, this proposal will strengthen the bridge between applied algebra and real-world applications, through the study of reaction networks.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.