Projektbeschreibung
Neue Theorien für Polynomgleichungen zur Analyse komplexer biochemischer Modelle
Viele biologische und chemische Prozesse laufen über weitreichende biochemische Reaktionsnetzwerke ab. Diese Netzwerke beinhalten eine Vielzahl von Reaktionen, welche die Umwandlung und Transformation chemischer Spezies bewirken, die auf komplexe und oft weitgehend unbekannte Weise miteinander verknüpft sind. Modelle sind der beste Weg, um Einblicke und ein grundlegendes Verständnis zu erlangen sowie Netzwerke für spezifische Anwendungen zu entwerfen. Bei einem Modelltyp biochemischer Reaktionsnetzwerke werden parametrisierte Systeme aus Polynomgleichungen eingesetzt, deren korrekte Analyse jedoch eine Herausforderung darstellt. Das EU-finanzierte Projekt POSALG wird neuartige mathematische Grundlagen innerhalb der angewandten Algebra entwickeln, um parametrisierte Polynomgleichungen im Allgemeinen zu untersuchen, und die neue Theorie auf die Analyse von Reaktionsnetzwerkmodellen anwenden.
Ziel
Many real-world problems are reduced to the study of polynomial equations in the non-negative orthant, and this is in particular the case for models of the abundance of the species in a biochemical reaction network. The polynomials associated with realistic models are huge, with many parameters and variables, making qualitative analyses, without fixing parameter values, challenging.
This results in a mismatch between the needs in biology and the available mathematical tools. The driving aim of this proposal is to narrow the gap by developing novel mathematical theory within applied algebra to ultimately advance in the systematic analysis of biochemical models.
Motivated by specific applications in the field of reaction networks, we consider parametrized systems of polynomial equations, and address questions regarding the number of positive solutions, connected components of semi-algebraic sets, and signs of vectors. Specifically, we (1) pursue a generalization of the Descartes' rule of signs to hypersurfaces, to bound the number of negative and of positive connected components of the complement of a hypersurface in the positive orthant, in terms of the signs of the coefficients of the hypersurface; (2) follow a new strategy to prove the Global Attractor Conjecture; and, (3) develop new results to count the number of positive solutions or find parametrizations.
The novelty and strength of this proposal resides in the interplay between the advance in the analysis of reaction networks and the development of theory in real algebraic geometry. The research problems are studied in full generality for arbitrary parametrized polynomial systems, but each question has a well-defined purpose, directed to the ultimate goal of having a scanning tool to automatically analyze the models used in systems and synthetic biology. Therefore, this proposal will strengthen the bridge between applied algebra and real-world applications, through the study of reaction networks.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Die Klassifikation dieses Projekts wurde von Menschen validiert.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Die Klassifikation dieses Projekts wurde von Menschen validiert.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2021-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.