Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Biomechanical modelling and computational imaging to identify different causes of back pain in large epidemiological studies

Projektbeschreibung

Mit neuartigen Bildanalysealgorithmen die Ursachen chronischer Rückenschmerzen finden

Chronische Rückenschmerzen, weltweit eine der wesentlichen Ursachen für Behinderungen, haben biomechanische, entzündliche, neurologische und psychologische Ursachen. Mit konventioneller Bildgebung und Bewertung sind keine konkreten Ursachen für Rückenschmerzen aufzuzeigen, aber biomechanische Modelle können zwischen verschiedenen Ätiologien unterscheiden. Ziel des EU-finanzierten Projekts iBack-epic ist der im Rahmen einer großen Kohorte Teilnehmender erfolgende Einsatz neuartiger Bildanalyseverfahren zur Erkennung biomechanischer und entzündlicher Ursachen von Rückenschmerzen. Die Studie wird die kürzlich entwickelten, auf Deep Learning beruhenden Algorithmen zur Kennzeichnung und Segmentierung der Wirbelsäule nutzen, um individuelle biomechanische, funktionelle und morphometrische Parameter der Wirbelsäule zu berechnen. Diese quantitativen bildbasierten Parameter werden dazu beitragen, zwischen normaler Alterung und pathologischer Degeneration zu unterscheiden sowie mit der Entwicklung chronischer Rückenschmerzen verbundene Erkrankungen zu erkennen.

Ziel

Chronic back pain is a major burden and source of disability worldwide. It is primarily attributed to different biomechanical factors, but can also have inflammatory, neurological or psychological causes. Clinical findings and conventional imaging cannot reliably distinguish different causes of back pain. In contrast, individual biomechanical models can quantify diverse (pathologic) loading patterns and thus could be used to distinguish different aetiologies of back pain, to better understand individual pathophysiology and guide preventive strategies.
During my recent ERC-StG “iBack”, I developed quantitative imaging methods and deep-learning based image processing to automatically generate a fully individualized biomechanical model of the thoracolumbar spine. Simultaneously, two large-scale epidemiologic studies collected clinical and high-resolution imaging data of the spine of more than 15,000 participants so far, aiming at more than 35,000 participants by mid 2022
The high-level objective of iBack-epic is to use such novel image analysis techniques to identify different biomechanical and inflammatory causes of back pain in study participants.
I will adopt and extend my recently developed deep-learning based spine labelling and segmentation algorithms to fully automatically calculate individual biomechanical, functional and morphometric parameters of the spine. In this large-scale population data, I will identify different biomechanical loading patterns, use quantitative image-based parameters to discriminate normal ageing from pathologic degeneration and identify pathological conditions that are linked to back pain or subsequent development of chronic back pain.
Such a differentiation – for the first time based on quantitative image data – will allow for a better understanding of the underlying pathophysiology of back pain, an improved risk stratification, a tailored investigation of genetic causes and thus will help to better guide preventive strategies.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2021-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

KLINIKUM DER TECHNISCHEN UNIVERSITÄT MÜNCHEN (TUM KLINIKUM)
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 999 993,00
Adresse
ISMANINGER STRASSE 22
81675 Muenchen
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 999 993,00

Begünstigte (1)

Mein Booklet 0 0