Descripción del proyecto
Procesos dinámicos de obtención de imágenes en mayor resolución con microscopía de rayos X en 4D
Faltan herramientas de diagnóstico eficientes para observar fenómenos ultrarrápidos a pequeñas escalas en aplicaciones modernas, como la fabricación por adición. El objetivo del proyecto MHz-TOMOSCOPY, financiado con fondos europeos, es batir un nuevo récord en la microscopía de rayos X en 4D y, así, lograr unas resoluciones espacial y temporal más elevadas. Mediante fuentes de rayos X de alta luminosidad y múltiples sondas de rayos X, los investigadores esperan visualizar y caracterizar las dinámicas con unas velocidades de hasta varios kilómetros por segundo por primera vez a escala micrométrica. La obtención de imágenes en 4D de muestras opacas a velocidades de megahercio permitirá comprender numerosos campos, especialmente aquellos en que el conocimiento sobre los fenómenos ultrarrápidos se basa en simulaciones y especulaciones.
Objetivo
Modern enabling technologies, such as additive manufacturing or cavitation peening used in the aerospace and automotive industries, suffer from a lack of diagnostic tools. To date, one cannot provide relevant volumetric information about the fast processes involved. The realization of this project will break the current limits in fast, 4D X-ray microscopy by three orders of magnitude. It will be possible to visualize and characterize dynamics reaching velocities up to ~km/s for the first time with micron-scale resolutions. Instead of sample rotation, we will generate multiple X-ray probes and virtually rotate them around the sample to obtain with a single exposure multiple angular views simultaneously. Using modern X-ray sources with very high brilliance, each such 3D frame may be sampled at kHz rates at synchrotrons and even MHz rates at X-ray free-electron laser sources. This will unlock access to 4D observation of processes with velocities never before possible. 4D imaging of opaque samples at MHz rates enables insights across a range of sectors and industries. In cavitation peening, an industrially relevant phenomenon for aerospace and new materials, we have no volumetric information, due to its high speed. This breakthrough will be achieved by the construction of a prototype that will demonstrate MHz rate tomoscopy at the European XFEL, taking advantage of world-unique European laboratories for the benefit of industry. Observing MHz-fast phenomena in opaque samples enables an entirely new branch of research, with possibilities for all sectors where such fast phenomena has, to date, been left to simulations and speculations. For industry and society, it would open new possibilities in the development and management of several techniques, including laser driven additive manufacturing, shock waves, fractures, evaporation, light alloy metallurgy, fast fluid dynamics, and cavitation phenomena.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasópticamicroscopía
- ingeniería y tecnologíaingeniería de materialesmetalurgia
- ciencias naturalesciencias físicasópticafísica del láser
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Convocatoria de propuestas
HORIZON-EIC-2021-PATHFINDEROPEN-01
Consulte otros proyectos de esta convocatoriaRégimen de financiación
HORIZON-EIC - HORIZON EIC GrantsCoordinador
22607 Hamburg
Alemania