European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

MHz rate mulTiple prOjection X-ray MicrOSCOPY

Description du projet

Imagerie de processus dynamiques à haute résolution avec la microscopie à rayons X en quatre dimensions

Il manque des outils de diagnostic efficaces pour observer des phénomènes ultrarapides à petite échelle pour des applications modernes telles que la fabrication additive. Le projet MHz-TOMOSCOPY, financé par l’UE, vise à établir un nouveau record en matière de microscopie à rayons X en quatre dimensions, atteignant des résolutions spatiales et temporelles plus élevées. En utilisant des sources de rayons X à haute brillance et de multiples sondes à rayons X, les chercheurs aspirent à visualiser et à caractériser des dynamiques atteignant des vitesses de quelques kilomètres par seconde pour la première fois à l’échelle du micromètre. L’imagerie en quatre dimensions d’échantillons opaques à des vitesses de l’ordre du mégahertz ouvrira de nouvelles perspectives de compréhension dans de nombreux domaines, en particulier là où les phénomènes ultrarapides ont été employés aux simulations et aux spéculations.

Objectif

Modern enabling technologies, such as additive manufacturing or cavitation peening used in the aerospace and automotive industries, suffer from a lack of diagnostic tools. To date, one cannot provide relevant volumetric information about the fast processes involved. The realization of this project will break the current limits in fast, 4D X-ray microscopy by three orders of magnitude. It will be possible to visualize and characterize dynamics reaching velocities up to ~km/s for the first time with micron-scale resolutions. Instead of sample rotation, we will generate multiple X-ray probes and virtually rotate them around the sample to obtain with a single exposure multiple angular views simultaneously. Using modern X-ray sources with very high brilliance, each such 3D frame may be sampled at kHz rates at synchrotrons and even MHz rates at X-ray free-electron laser sources. This will unlock access to 4D observation of processes with velocities never before possible. 4D imaging of opaque samples at MHz rates enables insights across a range of sectors and industries. In cavitation peening, an industrially relevant phenomenon for aerospace and new materials, we have no volumetric information, due to its high speed. This breakthrough will be achieved by the construction of a prototype that will demonstrate MHz rate tomoscopy at the European XFEL, taking advantage of world-unique European laboratories for the benefit of industry. Observing MHz-fast phenomena in opaque samples enables an entirely new branch of research, with possibilities for all sectors where such fast phenomena has, to date, been left to simulations and speculations. For industry and society, it would open new possibilities in the development and management of several techniques, including laser driven additive manufacturing, shock waves, fractures, evaporation, light alloy metallurgy, fast fluid dynamics, and cavitation phenomena.

Régime de financement

HORIZON-EIC - HORIZON EIC Grants

Coordinateur

DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Contribution nette de l'UE
€ 1 024 390,00
Adresse
NOTKESTRASSE 85
22607 Hamburg
Allemagne

Voir sur la carte

Région
Hamburg Hamburg Hamburg
Type d’activité
Research Organisations
Liens
Coût total
€ 1 024 390,00

Participants (6)

Partenaires (2)