Project description
Research paves the way for near-frictionless materials
Around one fourth of the global energy losses result from friction and wear. The EU-funded SSLiP project will rely on a new concept called superlubricity, where solid, atomic-sized 2D materials can slide across one another experiencing virtually no friction. Through careful design of colloidal particles coated in these 2D materials, researchers will be able to control the carrier fluid and the mechanical properties of the colloids, as well as their sliding and collective behaviour. SSLiP will get superlubricity off the ground, extending laboratory research to practical applications. Scaling up the idea should help drastically reduce friction losses in passenger cars and help hard drives perform better.
Objective
Friction between moving parts and the associated wear are estimated to be directly responsible for 25% of the world's energy consumption. SSLiP seeks to establish a radically new way to drastically reduce friction, with potentially enormous technological and societal impact. The driving concept is structural superlubricity, extremely low friction that takes place at a lattice misfit between clean, flat, rigid crystalline surfaces. Structural superlubricity is currently a lab curiosity limited to micrometer scale and laboratory times. SSLiP will bring this to the macroscale to impact real-life products. The key idea is the use of tribo-colloids: colloidal particles coated in 2D materials, that will produce a dynamic network of superlubric contacts. Structural incompatibility between arrays of colloids allows us to replicate the low friction on bigger length scales and overcome the statistical roughness of real surfaces. We will leverage our breakthrough result to regenerate the 2D coatings themselves during sliding. Through careful design of these coatings, carrier fluid, and the mechanical properties of the core particles, the chemistry of sliding and collective behaviour of the colloids can be controlled. Synthesis and experiments of individual contacts will be combined with visualisation of colloid dynamics during sliding on larger scales and in-site chemical characterisation. These will be combined with multiscale simulations and theory to bridge the different length scales into a coherent framework. The developed ultra-low friction technology will drastically reduce loss of energy, for example in passenger cars (responsible for around 2 billion tonnes of CO2 per year) and increase the lifetime of parts. It will also enable radically new technologies that are impossible with current lubrication, thus paving the way for e.g. much higher writing speeds in harddisks, where the writing tip will be able to move in full contact with the disk.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering tribology lubrication
- natural sciences physical sciences condensed matter physics soft matter physics
- engineering and technology materials engineering coating and films
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.3.1.1 - The Pathfinder for Advanced Research
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.