Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Short-wave infrared photodetectors based on low-cost, environmentally friendly InSb colloidal quantum dots

Project description

Alternative-to-epitaxy manufacturing method holds promise for high-performance optoelectronic devices

Low-cost optoelectronic devices emitting in the short-wave infrared part of the electromagnetic spectrum are used in a range of applications. These include 3D weather imaging, night vision car safety and security cameras, chemical hazard detection, environmental sensing and biomedical diagnostics. Manufacturers currently grow such devices on epitaxial III-V semiconductors. The EU-funded ECOSWIR project will use a solution-processed technology based on colloidal quantum dots (CQDs). Unlike epitaxial growth, the proposed technology is lower-cost and compatible with CMOS processes. The newly developed optoelectronic devices will be grown on indium antimonide, a III-V semiconductor which owing to its high carrier mobility in room temperature and small exciton energy is expected to lead to unprecedented device performances.

Objective

The development of low-cost optoelectronic devices in the short-wave infrared (SWIR, 1-2 um), would open up a huge number of applications, such as 3D and adverse weather imaging, night vision for surveillance and automotive safety, chemical hazard detection, environmental sensing, and biomedical diagnostics etc. leading to a direct and huge impact on quality of life, health, and security, provided that such technologies are available at low cost and high volumes, to serve consumer electronics markets. To address this large consumer market volume the necessity for low-cost, non-toxic, and complementary metal oxide semiconductor (CMOS) compatible SWIR photodetectors is therefore indispensable. To date, the SWIR has been served by costly epitaxial III-V semiconductors, which are not monolithically integrated to silicon (CMOS) electronics, and suffer from high growth cost and low volume manufacturing. Compared to epitaxial technology, solution-processed technology based on colloidal quantum dots (CQDs) is more promising for SWIR photodetectors due to low cost and high volume manufacturing, and their CMOS integrability. On the other hand, InSb is an environmentally friendly IIIV semiconductor which possesses a narrow direct band gap and the highest room temperature carrier mobility, and the smallest exciton binding energy of all semiconductors, thus being ideal for SWIR photodetectors. Therefore, ECOSWIR aims to develop a whole new material platform based on non-epitaxial InSb CQDs that, in contrast to current III-V technologies, will enable CMOS compatibility and large-scale production of optoelectronic materials.Utilizing this achievement, ECOSWIR will provide a proof of principle of InSb CQDs SWIR photodetectors with performance that cannot be met by any prior CQDs devices, that will be competitive to the costly epitaxial technology and warrant introduction into high-volume, consumer electronics markets and pave the way towards printable SWIR photodetctors.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 181 152,96
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0