Description du projet
Recourir à l’intelligence artificielle pour mieux comprendre le son
L’intelligence artificielle dépend fortement des réseaux neuronaux profonds. Toutefois, ces réseaux présentent deux limites majeures. Tout d’abord, ils sont très complexes et nécessitent d’énormes quantités de données pour être formés, ainsi qu’une puissance de calcul considérable pour être efficaces. Ensuite, ils restent difficiles à interpréter. Pour remédier à ces lacunes, le projet HI-Audio, financé par le CER, vise à mettre au point des approches hybrides qui associent le traitement du signal et l’apprentissage automatique profond pour comprendre et analyser le son. Il fera appel à des modèles déterministes et statistiques innovants de l’environnement audio et sonore, avec des autoencodeurs neuronaux et des réseaux génératifs dédiés. Le projet se concentrera également sur des applications particulières, telles que l’analyse de la musique et de scènes sonores.
Objectif
Machine Listening, or AI for Sound, is defined as the general field of Artificial Intelligence applied to audio analysis, understanding and synthesis by a machine. The access to ever increasing super-computing facilities, combined with the availability of huge data repositories (although largely unannotated), has led to the emergence of a significant trend with pure data-driven machine learning approaches. The field has rapidly moved towards end-to-end neural approaches which aim to directly solve the machine learning problem for raw acoustic signals but often only loosely taking into account the nature and structure of the processed data. The main consequences are that the models are 1) overly complex, require massive amounts of data to be trained and extreme computing power to be efficient (in terms of task performance), and 2) remain largely unexplainable and non-interpretable. To overcome these major shortcomings, we believe that our prior knowledge about the nature of the processed data, their generation process and their perception by humans should be explicitly exploited in neural-based machine learning frameworks.
The aim of HI-Audio is to build such hybrid deep approaches combining parameter-efficient and interpretable signal models, musicological and physics-based models, with highly tailored, deep neural architectures. The research directions pursued in HI-Audio will exploit novel deterministic and statistical audio and sound environment models with dedicated neural auto-encoders and generative networks and target specific applications including speech and audio scene analysis, music information retrieval and sound transformation and synthesis.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2021-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
91120 Palaiseau
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.