Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Hybrid and Interpretable Deep neural audio machines

Descrizione del progetto

Ricorrere all’IA per comprendere meglio il suono

L’intelligenza artificiale fa molto affidamento sulle reti neurali profonde che, tuttavia, presentano due grandi limiti. Innanzitutto, sono molto complesse e, per essere efficienti, richiedono l’addestramento di grandi quantità di dati e una considerevole potenza di calcolo. In secondo luogo, continuano a essere difficili da interpretare. Con l’obiettivo di affrontare tali carenze, il progetto HI-Audio, finanziato dall’UE, si propone di sviluppare approcci ibridi che uniscano l’elaborazione del segnale e l’apprendimento automatico profondo per comprendere e analizzare il suono. Si avvarrà di innovativi modelli di ambienti audio e sonori deterministici e statistici con autoencoder neurali e reti generative dedicati. Inoltre, il progetto concentrerà l’attenzione su particolari applicazioni, quali la musica e l’analisi di scene audio.

Obiettivo

Machine Listening, or AI for Sound, is defined as the general field of Artificial Intelligence applied to audio analysis, understanding and synthesis by a machine. The access to ever increasing super-computing facilities, combined with the availability of huge data repositories (although largely unannotated), has led to the emergence of a significant trend with pure data-driven machine learning approaches. The field has rapidly moved towards end-to-end neural approaches which aim to directly solve the machine learning problem for raw acoustic signals but often only loosely taking into account the nature and structure of the processed data. The main consequences are that the models are 1) overly complex, require massive amounts of data to be trained and extreme computing power to be efficient (in terms of task performance), and 2) remain largely unexplainable and non-interpretable. To overcome these major shortcomings, we believe that our prior knowledge about the nature of the processed data, their generation process and their perception by humans should be explicitly exploited in neural-based machine learning frameworks.
The aim of HI-Audio is to build such hybrid deep approaches combining parameter-efficient and interpretable signal models, musicological and physics-based models, with highly tailored, deep neural architectures. The research directions pursued in HI-Audio will exploit novel deterministic and statistical audio and sound environment models with dedicated neural auto-encoders and generative networks and target specific applications including speech and audio scene analysis, music information retrieval and sound transformation and synthesis.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

INSTITUT MINES-TELECOM
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 482 317,50
Indirizzo
19 PLACE MARGUERITE PEREY
91120 Palaiseau
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Essonne
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 482 317,50

Beneficiari (1)

Il mio fascicolo 0 0