Project description
A genetics analysis of light-harvesting complexes
Light-harvesting complex II (LHCII) catalyses the first stages of photosynthesis, and it is the most abundant membrane protein, binding most of chlorophyll on Earth. However, current methods lack the ability to conduct a complete genetic analysis of LHCII proteins. The ERC-funded GrInSun project will conduct an in-depth analysis of LHCII proteins in algae and plants by deploying new techniques that have been recently used in the study of light-harvesting complexes of green plants. Using reverse genetics, researchers will reveal the domains involved in the regulation of photon harvesting, photoprotection and growth. Forward genetics analysis will aid in identifying determinants of protein functions.
Objective
Life on earth feeds on photons. Photosynthesis in green algae and land plants has been the world’s most successful biological process and has conquered the most diverse environments. Photosynthetic reaction centres are extremely well conserved, an unlikely basis for the ability to adapt. Antenna systems are widely diversified and yet only the Light-Harvesting Complexes (LHCs) have been selected for growth in the land environment. The distinctive property of GreenCut organisms lies in their light-harvesting mechanisms, which ensure efficient photon harvesting and photoprotection. Despite being the most abundant membrane proteins on earth, binding most of chlorophyll that makes the planet green, the secrets of LHCs are still concealed because we lack experimental systems that make possible the reverse and forward genetic analysis of LHCII proteins. Indeed, the clustered-genes encoding LHCII has resisted targeting by classic genetics. I propose an in-depth analysis of LHCII proteins in algae and plants by deploying a new technology that we have developed with our experience in studying LHCs. Firstly, we deleted all genes-encoding LHCII in model species of both land plants and green algae by genome editing and complemented plant ΔLHCII lines with site-directed, mutated sequences, demonstrating that reverse genetics can reveal the domains involved in the regulation of photon harvesting, photoprotection and growth. Secondly, forward genetics, on the other hand, will enable the identification of protein determinants by selecting specific phenotypes on complementing mixotrophic algal ΔLHCII lines with randomly mutagenized sequences. This will lead to a map of structures and functions that identifies the specific biological role of each component of the antenna system in vivo and in vitro. The project’s outcome will be the ability to design in a rational way the light-harvesting systems of plants and algae in the context of sustainable agriculture and bio-industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
37129 Verona
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.