Project description
Study to investigate how organic matter shaped the evolution of icy worlds
Research suggests that heavy organic molecules account for a large part of the outer solar system bodies such as icy moons, comets and trans-Neptunian objects. So far, the presence of carbonaceous organic matter, a low-density organic matter component, has been largely overlooked. The EU-funded PROMISES project aims to study the interaction of carbonaceous organic matter with ice and rocks, which is essential for understanding the evolution of ocean worlds and assessing their potential to host life. To synthesise the material, researchers will use a high-pressure device called a diamond anvil cell. Furthermore, they will create new models to study the chemical reactions and thermochemical properties of the interacting heavy organic molecules.
Objective
There is growing evidence that heavy organic molecules are a major component of the outer solar system bodies such as icy moons, comets, and Trans-Neptunian Objects (TNOs). Density profiles inferred from measurements of space missions require a low-density component in the core of the largest objects such as Ganymede and Titan. These observations suggest that a previously overlooked low-density component, identified as carbonaceous organic matter (COM), is one of the three main components, in addition to ice and rocks, building planetary bodies that formed beyond the ice line. However, there is a dearth of laboratory experiments and numerical simulations exploring the interaction of the heavy organic molecules constituting the COM with both the ice component (mainly H2O ices) and the rocky component (hydrated silicates, oxides and sulphides) at pressures relevant to icy moons. Observations from space missions also demonstrated that most icy moons are differentiated into a refractory core and an outer hydrosphere that includes a liquid layer (deep ocean), thus the name of ocean worlds. This raises the questions of the emergence of life at the ocean/core interface and of the habitability of ocean worlds. How does the presence of COM affect the thermal and chemical evolution of ocean worlds? The interaction between COM, ice and rocks is therefore essential for understanding the evolution of ocean worlds and for assessing their habitability potential. First, this project conducts laboratory experiments using diamond anvil cells (DAC) coupled with in situ Raman spectroscopy, a combination that is best suited for this kind of investigation. Second, it develops a thermochemical evolution model that can handle the chemical reactions and the thermo-chemical properties of the three components. Third, it applies the results to the evolution of ocean worlds in our solar system and beyond.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy planetary sciences natural satellites
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
44000 Nantes
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.