European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Presence and Role of Organic Matter in Icy Satellites and ExtraSolar planets

Descripción del proyecto

Estudio sobre cómo la materia orgánica determinó la evolución de los mundos helados

Las investigaciones sugieren que las moléculas orgánicas pesadas constituyen una gran parte de los cuerpos del Sistema Solar exterior, como lunas heladas, cometas y objetos transneptunianos. Hasta ahora, la presencia de materia orgánica carbonosa, un componente de la materia orgánica de baja densidad, se ha ignorado en gran medida. El equipo del proyecto PROMISES, financiado con fondos europeos, se propone estudiar la interacción de la materia orgánica carbonosa con el hielo y las rocas, lo que es esencial para comprender la evolución de los mundos oceánicos y evaluar su potencial para albergar vida. Para sintetizar el material, los investigadores utilizarán un dispositivo de alta presión denominado «célula de yunque de diamante». Además, crearán nuevos modelos para estudiar las reacciones químicas y las propiedades termoquímicas de las moléculas orgánicas pesadas que interactúan.

Objetivo

There is growing evidence that heavy organic molecules are a major component of the outer solar system bodies such as icy moons, comets, and Trans-Neptunian Objects (TNOs). Density profiles inferred from measurements of space missions require a low-density component in the core of the largest objects such as Ganymede and Titan. These observations suggest that a previously overlooked low-density component, identified as carbonaceous organic matter (COM), is one of the three main components, in addition to ice and rocks, building planetary bodies that formed beyond the ice line. However, there is a dearth of laboratory experiments and numerical simulations exploring the interaction of the heavy organic molecules constituting the COM with both the ice component (mainly H2O ices) and the rocky component (hydrated silicates, oxides and sulphides) at pressures relevant to icy moons. Observations from space missions also demonstrated that most icy moons are differentiated into a refractory core and an outer hydrosphere that includes a liquid layer (deep ocean), thus the name of ocean worlds. This raises the questions of the emergence of life at the ocean/core interface and of the habitability of ocean worlds. How does the presence of COM affect the thermal and chemical evolution of ocean worlds? The interaction between COM, ice and rocks is therefore essential for understanding the evolution of ocean worlds and for assessing their habitability potential. First, this project conducts laboratory experiments using diamond anvil cells (DAC) coupled with in situ Raman spectroscopy, a combination that is best suited for this kind of investigation. Second, it develops a thermochemical evolution model that can handle the chemical reactions and the thermo-chemical properties of the three components. Third, it applies the results to the evolution of ocean worlds in our solar system and beyond.

Palabras clave

Institución de acogida

NANTES UNIVERSITE
Aportación neta de la UEn
€ 1 854 958,75
Dirección
1 QUAI DE TOURVILLE
44000 Nantes
Francia

Ver en el mapa

Región
Pays de la Loire Pays de la Loire Loire-Atlantique
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 854 958,75

Beneficiarios (3)