Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

self-X Artificial Intelligence for European Process Industry digital transformation

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Autonomic managers for Data in Motion and Humans support in AI solutions-final version (se abrirá en una nueva ventana)

Final version to be provided at month 30 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

Education and Training Program and Results (se abrirá en una nueva ventana)

Document explaining the impact of the training program ensuring the toolkit’s evolution after project’s end, learn resources, will cover: lectures, seminars, workshops, conferences, in house training and on-line materials

Autonomic managers for Data in Motion and Humans support in AI solutions-initial version (se abrirá en una nueva ventana)

Initial version to be provided at month 18 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

s-X-AIPI open-source toolset-v2 (se abrirá en una nueva ventana)

Second version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

s-X-AIPI open-source toolset-v1 (se abrirá en una nueva ventana)

First version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

AI for Process Industry Reference Architecture and implementation (se abrirá en una nueva ventana)

Preliminary design of the Reference Architecture based on existing standards (FIWARE, RAMI4.0, IDSA, Apache) and requirements from use cases to implement self-X AI applications in those use cases.

Validation report for Data in Motion and human support in IT/OT use case's infrastructures (se abrirá en una nueva ventana)

The s-X-AIPI “New RAW Data” integration will be validated in all scenarios and feedbacks will be collected for improving performance, tuning and bug fixing of the different self-X AI appications in the use cases.

Report on the standardization landscape and applicable standards (se abrirá en una nueva ventana)

Report on the standards affected and related with project's environment and technologies.

General s-X-AIPI technology requirements validation report (se abrirá en una nueva ventana)

Report of the methodology which will allow to validate (assumptions, designs, implementations and deployments) the different components developed in WP4

Guidelines for trustworthy AI in process industry (se abrirá en una nueva ventana)

Update EC guidelines for a trustworthy AI based on experiences from project and use cases in particular, adaptation of guideline to process industries.

Scenarios and Requirements for self-X AI adoption in Process Industry (se abrirá en una nueva ventana)

Analysis of the industrial Scenarios and the preliminar design of the requirements from use cases of the project for adoption in Process Industry of self-X or autonomic AI.

Report on the contribution to standardization-final version (se abrirá en una nueva ventana)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Final version to be provided at month 36

AI Maturity Model for Process Industry (se abrirá en una nueva ventana)

AI Maturity Model customized for the process industry to carry out an initial barrier analysis, based on the experiences of use cases.

Report on the contribution to standardization-intermediate version (se abrirá en una nueva ventana)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Intermediate version to be provided at month 18

s-X-AIPI solutions impact evaluation on use cases (se abrirá en una nueva ventana)

Evalutaion of the impact in use cases of their performance improvements across different KPIs as a consecuence of use of self-X AI applications.

Report on the contribution to standardization-initial version (se abrirá en una nueva ventana)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Initial version to be provided at month 9

Assessment of collaborative self-X AI solutions performance based on training data-sets (se abrirá en una nueva ventana)

Assessment of the models according to each specific of use case requirements and foreseen self-X abilities and enable the learning of the models that reflect usual behaviour of the system with the information available in this stage of the project.

Data management plan-initial version (se abrirá en una nueva ventana)

Initial Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Data management plan-final version (se abrirá en una nueva ventana)

Final Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Publicaciones

selfX: An open-source R package with autonomic abilities for data mining (se abrirá en una nueva ventana)

Autores: M Galende; A Corral; A Reñones
Publicado en: Open Research Europe, 2024
Editor: Open Research Europe
DOI: 10.12688/OPENRESEUROPE.18070.1

Timeseries on IIoT Platforms: Requirements and Survey for Digital Twins in Process Industry (se abrirá en una nueva ventana)

Autores: Nölle, Christoph; Kannisto, Petri
Publicado en: 2023
Editor: arXiv
DOI: 10.48550/arxiv.2310.03761

An AI-Driven User-Centric Framework reinforced by Autonomic Computing: A case study in the Aluminium sector (se abrirá en una nueva ventana)

Autores: Angosto Artigues, Ramon; Coto, Andrea Gregores; Torrez Herrera, Jonathan Josue; Tomás, Fernando Lou; Verardi, Sabrina; Marzano, Mattia Giuseppe; Martínez, Andrea Fernández
Publicado en: Proceedings of the 12th International Conference on Human Interaction & Emerging Technologies (IHIET 2024), Edición AHFE (2024) International Conference, vol -1, 2024
Editor: AHFE International
DOI: 10.54941/AHFE1005478

Resilient, Adaptive Industrial Self-X AI Pipeline with External AI Services: A Case Study on Electric Steelmaking (se abrirá en una nueva ventana)

Autores: Petri Kannisto; Zeinab Kargar; Gorka Alvarez; Bernd Kleimt; Asier Arteaga
Publicado en: Processes, 2024, ISSN 2227-9717
Editor: MDPI
DOI: 10.3390/PR12122877

A reference architecture to implement Self-X capability in an industrial software architecture (se abrirá en una nueva ventana)

Autores: Walter Quadrini;Francesco Alessandro Cuzzola; Luca Fumagal; Marco Taisch; Gabriele De Luca; Marta Calderaro;Mattia Giuseppe Marzano; Angelo Marguglio
Publicado en: Procedia Computer Science, 2024, ISSN 1877-0509
Editor: Elsevier
DOI: 10.1016/j.procs.2024.01.044

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0