Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

self-X Artificial Intelligence for European Process Industry digital transformation

CORDIS fournit des liens vers les livrables publics et les publications des projets HORIZON.

Les liens vers les livrables et les publications des projets du 7e PC, ainsi que les liens vers certains types de résultats spécifiques tels que les jeux de données et les logiciels, sont récupérés dynamiquement sur OpenAIRE .

Livrables

Autonomic managers for Data in Motion and Humans support in AI solutions-final version (s’ouvre dans une nouvelle fenêtre)

Final version to be provided at month 30 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

Education and Training Program and Results (s’ouvre dans une nouvelle fenêtre)

Document explaining the impact of the training program ensuring the toolkit’s evolution after project’s end, learn resources, will cover: lectures, seminars, workshops, conferences, in house training and on-line materials

Autonomic managers for Data in Motion and Humans support in AI solutions-initial version (s’ouvre dans une nouvelle fenêtre)

Initial version to be provided at month 18 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

s-X-AIPI open-source toolset-v2 (s’ouvre dans une nouvelle fenêtre)

Second version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

s-X-AIPI open-source toolset-v1 (s’ouvre dans une nouvelle fenêtre)

First version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

AI for Process Industry Reference Architecture and implementation (s’ouvre dans une nouvelle fenêtre)

Preliminary design of the Reference Architecture based on existing standards (FIWARE, RAMI4.0, IDSA, Apache) and requirements from use cases to implement self-X AI applications in those use cases.

Validation report for Data in Motion and human support in IT/OT use case's infrastructures (s’ouvre dans une nouvelle fenêtre)

The s-X-AIPI “New RAW Data” integration will be validated in all scenarios and feedbacks will be collected for improving performance, tuning and bug fixing of the different self-X AI appications in the use cases.

Report on the standardization landscape and applicable standards (s’ouvre dans une nouvelle fenêtre)

Report on the standards affected and related with project's environment and technologies.

General s-X-AIPI technology requirements validation report (s’ouvre dans une nouvelle fenêtre)

Report of the methodology which will allow to validate (assumptions, designs, implementations and deployments) the different components developed in WP4

Guidelines for trustworthy AI in process industry (s’ouvre dans une nouvelle fenêtre)

Update EC guidelines for a trustworthy AI based on experiences from project and use cases in particular, adaptation of guideline to process industries.

Scenarios and Requirements for self-X AI adoption in Process Industry (s’ouvre dans une nouvelle fenêtre)

Analysis of the industrial Scenarios and the preliminar design of the requirements from use cases of the project for adoption in Process Industry of self-X or autonomic AI.

Report on the contribution to standardization-final version (s’ouvre dans une nouvelle fenêtre)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Final version to be provided at month 36

AI Maturity Model for Process Industry (s’ouvre dans une nouvelle fenêtre)

AI Maturity Model customized for the process industry to carry out an initial barrier analysis, based on the experiences of use cases.

Report on the contribution to standardization-intermediate version (s’ouvre dans une nouvelle fenêtre)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Intermediate version to be provided at month 18

s-X-AIPI solutions impact evaluation on use cases (s’ouvre dans une nouvelle fenêtre)

Evalutaion of the impact in use cases of their performance improvements across different KPIs as a consecuence of use of self-X AI applications.

Report on the contribution to standardization-initial version (s’ouvre dans une nouvelle fenêtre)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Initial version to be provided at month 9

Assessment of collaborative self-X AI solutions performance based on training data-sets (s’ouvre dans une nouvelle fenêtre)

Assessment of the models according to each specific of use case requirements and foreseen self-X abilities and enable the learning of the models that reflect usual behaviour of the system with the information available in this stage of the project.

Data management plan-initial version (s’ouvre dans une nouvelle fenêtre)

Initial Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Data management plan-final version (s’ouvre dans une nouvelle fenêtre)

Final Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Publications

selfX: An open-source R package with autonomic abilities for data mining (s’ouvre dans une nouvelle fenêtre)

Auteurs: M Galende; A Corral; A Reñones
Publié dans: Open Research Europe, 2024
Éditeur: Open Research Europe
DOI: 10.12688/OPENRESEUROPE.18070.1

Timeseries on IIoT Platforms: Requirements and Survey for Digital Twins in Process Industry (s’ouvre dans une nouvelle fenêtre)

Auteurs: Nölle, Christoph; Kannisto, Petri
Publié dans: 2023
Éditeur: arXiv
DOI: 10.48550/arxiv.2310.03761

An AI-Driven User-Centric Framework reinforced by Autonomic Computing: A case study in the Aluminium sector (s’ouvre dans une nouvelle fenêtre)

Auteurs: Angosto Artigues, Ramon; Coto, Andrea Gregores; Torrez Herrera, Jonathan Josue; Tomás, Fernando Lou; Verardi, Sabrina; Marzano, Mattia Giuseppe; Martínez, Andrea Fernández
Publié dans: Proceedings of the 12th International Conference on Human Interaction & Emerging Technologies (IHIET 2024), Numéro AHFE (2024) International Conference, vol -1, 2024
Éditeur: AHFE International
DOI: 10.54941/AHFE1005478

Resilient, Adaptive Industrial Self-X AI Pipeline with External AI Services: A Case Study on Electric Steelmaking (s’ouvre dans une nouvelle fenêtre)

Auteurs: Petri Kannisto; Zeinab Kargar; Gorka Alvarez; Bernd Kleimt; Asier Arteaga
Publié dans: Processes, 2024, ISSN 2227-9717
Éditeur: MDPI
DOI: 10.3390/PR12122877

A reference architecture to implement Self-X capability in an industrial software architecture (s’ouvre dans une nouvelle fenêtre)

Auteurs: Walter Quadrini;Francesco Alessandro Cuzzola; Luca Fumagal; Marco Taisch; Gabriele De Luca; Marta Calderaro;Mattia Giuseppe Marzano; Angelo Marguglio
Publié dans: Procedia Computer Science, 2024, ISSN 1877-0509
Éditeur: Elsevier
DOI: 10.1016/j.procs.2024.01.044

Recherche de données OpenAIRE...

Une erreur s’est produite lors de la recherche de données OpenAIRE

Aucun résultat disponible

Mon livret 0 0