Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

self-X Artificial Intelligence for European Process Industry digital transformation

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Autonomic managers for Data in Motion and Humans support in AI solutions-final version (öffnet in neuem Fenster)

Final version to be provided at month 30 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

Education and Training Program and Results (öffnet in neuem Fenster)

Document explaining the impact of the training program ensuring the toolkit’s evolution after project’s end, learn resources, will cover: lectures, seminars, workshops, conferences, in house training and on-line materials

Autonomic managers for Data in Motion and Humans support in AI solutions-initial version (öffnet in neuem Fenster)

Initial version to be provided at month 18 Design about the Autonomic managers in charge of coordinate different self-X AI components of use cases to integrate appropriately the flow of “New RAW data” from industrial data sources and the human support according to self-X abilities available (configuration, optimization and healing). Initial version to be provided at month 18

s-X-AIPI open-source toolset-v2 (öffnet in neuem Fenster)

Second version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

s-X-AIPI open-source toolset-v1 (öffnet in neuem Fenster)

First version of open source algorithms, data sources and example of applications usage to create new self-X AI applications.

AI for Process Industry Reference Architecture and implementation (öffnet in neuem Fenster)

Preliminary design of the Reference Architecture based on existing standards (FIWARE, RAMI4.0, IDSA, Apache) and requirements from use cases to implement self-X AI applications in those use cases.

Validation report for Data in Motion and human support in IT/OT use case's infrastructures (öffnet in neuem Fenster)

The s-X-AIPI “New RAW Data” integration will be validated in all scenarios and feedbacks will be collected for improving performance, tuning and bug fixing of the different self-X AI appications in the use cases.

Report on the standardization landscape and applicable standards (öffnet in neuem Fenster)

Report on the standards affected and related with project's environment and technologies.

General s-X-AIPI technology requirements validation report (öffnet in neuem Fenster)

Report of the methodology which will allow to validate (assumptions, designs, implementations and deployments) the different components developed in WP4

Guidelines for trustworthy AI in process industry (öffnet in neuem Fenster)

Update EC guidelines for a trustworthy AI based on experiences from project and use cases in particular, adaptation of guideline to process industries.

Scenarios and Requirements for self-X AI adoption in Process Industry (öffnet in neuem Fenster)

Analysis of the industrial Scenarios and the preliminar design of the requirements from use cases of the project for adoption in Process Industry of self-X or autonomic AI.

Report on the contribution to standardization-final version (öffnet in neuem Fenster)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Final version to be provided at month 36

AI Maturity Model for Process Industry (öffnet in neuem Fenster)

AI Maturity Model customized for the process industry to carry out an initial barrier analysis, based on the experiences of use cases.

Report on the contribution to standardization-intermediate version (öffnet in neuem Fenster)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Intermediate version to be provided at month 18

s-X-AIPI solutions impact evaluation on use cases (öffnet in neuem Fenster)

Evalutaion of the impact in use cases of their performance improvements across different KPIs as a consecuence of use of self-X AI applications.

Report on the contribution to standardization-initial version (öffnet in neuem Fenster)

Report about how the selected results of the project will contribute to standardization activities and how the partners will be involved in such activities. Initial version to be provided at month 9

Assessment of collaborative self-X AI solutions performance based on training data-sets (öffnet in neuem Fenster)

Assessment of the models according to each specific of use case requirements and foreseen self-X abilities and enable the learning of the models that reflect usual behaviour of the system with the information available in this stage of the project.

Data management plan-initial version (öffnet in neuem Fenster)

Initial Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Data management plan-final version (öffnet in neuem Fenster)

Final Data Management Plan for the S-X-AIPI project. This plan will ensure that all research data generated during is findable, accessible, interoperable and reusable (FAIR). It will include a set of guidelines and templates for an apprpriate description of the generated data sets.

Veröffentlichungen

selfX: An open-source R package with autonomic abilities for data mining (öffnet in neuem Fenster)

Autoren: M Galende; A Corral; A Reñones
Veröffentlicht in: Open Research Europe, 2024
Herausgeber: Open Research Europe
DOI: 10.12688/OPENRESEUROPE.18070.1

Timeseries on IIoT Platforms: Requirements and Survey for Digital Twins in Process Industry (öffnet in neuem Fenster)

Autoren: Nölle, Christoph; Kannisto, Petri
Veröffentlicht in: 2023
Herausgeber: arXiv
DOI: 10.48550/arxiv.2310.03761

An AI-Driven User-Centric Framework reinforced by Autonomic Computing: A case study in the Aluminium sector (öffnet in neuem Fenster)

Autoren: Angosto Artigues, Ramon; Coto, Andrea Gregores; Torrez Herrera, Jonathan Josue; Tomás, Fernando Lou; Verardi, Sabrina; Marzano, Mattia Giuseppe; Martínez, Andrea Fernández
Veröffentlicht in: Proceedings of the 12th International Conference on Human Interaction & Emerging Technologies (IHIET 2024), Ausgabe AHFE (2024) International Conference, vol -1, 2024
Herausgeber: AHFE International
DOI: 10.54941/AHFE1005478

Resilient, Adaptive Industrial Self-X AI Pipeline with External AI Services: A Case Study on Electric Steelmaking (öffnet in neuem Fenster)

Autoren: Petri Kannisto; Zeinab Kargar; Gorka Alvarez; Bernd Kleimt; Asier Arteaga
Veröffentlicht in: Processes, 2024, ISSN 2227-9717
Herausgeber: MDPI
DOI: 10.3390/PR12122877

A reference architecture to implement Self-X capability in an industrial software architecture (öffnet in neuem Fenster)

Autoren: Walter Quadrini;Francesco Alessandro Cuzzola; Luca Fumagal; Marco Taisch; Gabriele De Luca; Marta Calderaro;Mattia Giuseppe Marzano; Angelo Marguglio
Veröffentlicht in: Procedia Computer Science, 2024, ISSN 1877-0509
Herausgeber: Elsevier
DOI: 10.1016/j.procs.2024.01.044

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0