Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Interplay of multiplicative number theory and additive combinatorics

Description du projet

Examiner les liens entre la théorie multiplicative des nombres et la combinatoire additive

La théorie multiplicative des nombres est une branche de la théorie du même nom qui porte sur les nombres premiers et les fonctions multiplicatives. L’une des grandes questions ouvertes dans le domaine est la conjecture de Chowla, qui avance que les décompositions en facteurs premiers de nombres consécutifs devraient se comporter indépendamment les unes des autres. Financé par le programme Actions Marie Skłodowska-Curie, le projet MultNT entend étudier plus avant la conjecture de Chowla, ainsi que d’autres questions clés dans la théorie multiplicative des nombres. Ce projet examinera également les liens entre la conjecture de Chowla et la combinatoire additive et l’analyse de Fourier d’ordre supérieur. En outre, MultNT s’intéressera à la conjecture de Hardy-Littlewood en moyenne et au principe de Hasse pour presque toutes les surfaces d’un certain type.

Objectif

This project concerns multiplicative number theory and its interplay with the emerging topic of additive combinatorics. Multiplicative number theory is an area of number theory concerned with the study of prime numbers and multiplicative functions. One of the most important unsolved questions in this area and in all of number theory is the twin prime conjecture, asserting that there are infinitely many pairs of prime numbers differing by two.

In 1965, Chowla formulated an influential conjecture that can be viewed as an approximation to the twin prime conjecture. Chowla’s conjecture predicts that the prime factorisations of consecutive integers behave independently of each other. This conjecture captures the key difficulty in the twin prime conjecture, but yet there has been a lot of recent progress on Chowla’s conjecture by the applicant and others.

The aim of this project is to make substantial progress on Chowla’s conjecture, as well as on other key questions in multiplicative number theory, using a mixture of methods from analytic number theory and additive combinatorics, as well as higher order Fourier analysis, a theory recently developed by Green and Tao. Connections between Chowla’s conjecture and questions in additive combinatorics and higher order Fourier analysis have recently been discovered in works of the applicant and others, and the proposed research aims at exploiting these connections to make substantial progress on Chowla’s conjecture. The project also involves several other problems of interest in number theory, such as the Hardy—Littlewood conjecture on average and the Hasse principle for almost all surfaces of a certain type.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

TURUN YLIOPISTO
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 215 534,40
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0