Project description
Efficient and accurate simulation of nonlinearities in aeroengine blade and casing interactions
Europe is dedicated to reducing the emissions of its aviation sector. Newer, lighter, more compact and efficient aeroengine turbines will play a key role in achieving this goal. These turbines have reduced distances between rotating and static components and, simultaneously, the lighter components are more prone to vibration. Highly accurate simulation tools are required to ensure the safe operation of these turbines. With the support of the Marie Skłodowska-Curie Actions programme, the BC-Int project will develop validated mathematical models that account for nonlinearities to predict the dynamic behaviour of rotors in case of interactions between the turbine blades and their casing.
Objective
Gas turbines play a vital role in terms of energy and mobility in 21st century. Accurate simulation tools are mandatory to increase competitiveness by increasing safety and reducing development costs.
The growing tendency of designers to increase the efficiency of turbines has led to reduced operating clearances between rotating and static components and consequently frequent structural contact during operation. On top of that, the design tendency to reductions in fuel burn, noise and emissions makes the structural components lighter, slenderer and under greater excitation which increases their geometrically nonlinear behavior.
Reliable analysis of the dynamic response of a turbine during blade-casing contact-induced interactions is of great importance due to its impact on fatigue life or potential catastrophic failure.
The project aims at developing a validated numerical tool to predict the vibration due to blade-casing interactions. High computational efficiency will be granted by a nonlinear model order reduction technique able to handle both contact (local) and geometric (global) nonlinearities.
The numerical predictive tool will be experimentally validated, taking advantage of the experimental equipment available at the host institution.
The BC-Ints project aims at developing and validating mathematical and numerical models where both local and global nonlinearities are taken into account for an accurate prediction of the dynamic behaviour of rotors in case of blade-casing interactions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10129 Torino
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.