Descripción del proyecto
Más información sobre las celdas fotovoltaicas de perovskita de estaño
Las celdas fotovoltaicas de silicio dominan el mercado fotovoltaico actual. Las celdas fotovoltaicas de perovskita son una alternativa prometedora, eficiente y económica gracias a su facilidad de producción y a sus propiedades electroópticas únicas. Sin embargo, la toxicidad del plomo limita la sostenibilidad y la aplicación generalizada de la tecnología de perovskita. Las celdas fotovoltaicas de perovskita de estaño son la alternativa ecológica más destacada a las celdas fotovoltaicas de perovskita basada en plomo. Si bien son muy atractivas para la siguiente generación de celdas fotovoltaicas, las celdas fotovoltaicas de perovskita de estaño tienen una eficiencia de conversión y una estabilidad bajas. El proyecto HyPerGreen, con el apoyo de las Acciones Marie Skłodowska-Curie (MSCA), mejorará las películas e interfaces delgadas de las celdas fotovoltaicas de perovskita de estaño, dando lugar a una eficiencia superior al 20 %. La mejora de las celdas fotovoltaicas de perovskita de estaño es vital para el uso generalizado de la tecnología sostenible de la perovskita de estaño.
Objetivo
Perovskite solar cells (PSCs) are a promising alternative to silicon SCs, currently dominating the photovoltaic market. The skyrocket efficiency of lead-based PSCs is achieved due to their ease of production and unique electro-optical properties. However, lead toxicity limits the sustainability and broad application of perovskite technology. Environmentally-friendly tin-PSCs are the most efficient alternative to lead-based PSCs. Low conversion efficiency and stability are two challenges of tin-PSCs caused by defects in thin-films and selective interfaces. Advanced characterisation is needed to understand and prevent sources of charge losses in tin-PSCs.
In the project HyPerGreen, Artem Musiienko (AM) will control parameters of thin-film and heterojunctions in tin-PSCs and use advanced experimental methods to characterise them. To improve thin-films, AM will incorporate different cations in tin-perovskite. To understand the influence of additives on tin-perovskite properties, AM will use photo Hall effect measurement (PHM) based on charge transport in the magnetic field under light illumination. PHM will give deep insight into the effect of composition variation on material properties.
To effectively collect free carriers, AM will use interface optimization with different selective layers. To understand charge separation and optimise charge transport material, AM will apply surface photovoltage (SPV), which gives valuable information on the charge separation quality at the interface. Using these innovative approaches, AM will develop pathways leading to stable tin-PSCs with an efficiency of over 20%.
The host Prof. Abate group at HZB is a global leader in the development of tin-PSCs, with outstanding expertise in tin-PSC technology. AM will contribute his knowledge in semiconductor characterisation by PHM and SPV. This project aims to provide industrially relevant strategies for tin-PSC improvement essential for the widespread use of sustainable tin-perovskites.
Ámbito científico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinador
14109 Berlin
Alemania