Descrizione del progetto
Riflettori puntati sulle celle solari a base di perovskite e stagno
Le celle solari in silicio dominano il mercato odierno del fotovoltaico. Le celle solari in perovskite rappresentano un’alternativa efficiente a basso costo grazie alla facilità con cui vengono prodotte e alle loro uniche proprietà elettro-ottiche. Ciononostante, la tossicità del piombo è un limite alla sostenibilità e alla vasta applicazione della tecnologia perovskitica. Le celle solari in perovskite e stagno sono la più importante alternativa ecocompatibile alle celle solari in sola perovskite. Sebbene siano molto attraenti per la prossima generazione di celle solari, esse sono dotate di una bassa efficienza e stabilità di conversione. Con il sostegno del programma di azioni Marie Skłodowska-Curie (MSCA), il progetto HyPerGreen migliorerà le sottili pellicole e interfacce delle celle solari in perovskite e stagno, determinando un’efficienza superiore al 20 %. Il miglioramento di questo tipo di celle solari è fondamentale per un impiego diffuso della tecnologia sostenibile basata sulla combinazione di perovskite e stagno.
Obiettivo
Perovskite solar cells (PSCs) are a promising alternative to silicon SCs, currently dominating the photovoltaic market. The skyrocket efficiency of lead-based PSCs is achieved due to their ease of production and unique electro-optical properties. However, lead toxicity limits the sustainability and broad application of perovskite technology. Environmentally-friendly tin-PSCs are the most efficient alternative to lead-based PSCs. Low conversion efficiency and stability are two challenges of tin-PSCs caused by defects in thin-films and selective interfaces. Advanced characterisation is needed to understand and prevent sources of charge losses in tin-PSCs.
In the project HyPerGreen, Artem Musiienko (AM) will control parameters of thin-film and heterojunctions in tin-PSCs and use advanced experimental methods to characterise them. To improve thin-films, AM will incorporate different cations in tin-perovskite. To understand the influence of additives on tin-perovskite properties, AM will use photo Hall effect measurement (PHM) based on charge transport in the magnetic field under light illumination. PHM will give deep insight into the effect of composition variation on material properties.
To effectively collect free carriers, AM will use interface optimization with different selective layers. To understand charge separation and optimise charge transport material, AM will apply surface photovoltage (SPV), which gives valuable information on the charge separation quality at the interface. Using these innovative approaches, AM will develop pathways leading to stable tin-PSCs with an efficiency of over 20%.
The host Prof. Abate group at HZB is a global leader in the development of tin-PSCs, with outstanding expertise in tin-PSC technology. AM will contribute his knowledge in semiconductor characterisation by PHM and SPV. This project aims to provide industrially relevant strategies for tin-PSC improvement essential for the widespread use of sustainable tin-perovskites.
Campo scientifico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programma(i)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Meccanismo di finanziamento
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinatore
14109 Berlin
Germania