Description du projet
Coup de projecteur sur les cellules solaires en étain-perovskite
Les cellules solaires (CS) en silicium dominent le marché photovoltaïque actuel. Les cellules solaires pérovskite (CSP) constituent une alternative prometteuse, efficace et peu coûteuse, en raison de leur facilité de production et de leurs propriétés électro-optiques uniques. Cependant, la toxicité du plomb limite la durabilité et la généralisation de la technologie pérovskite. Les CSP à l’étain représente l’alternative écologique la plus pertinente aux CSP à base de plomb. Bien qu’elles soient très intéressantes pour la prochaine génération de cellules solaires, les CSP à l’étain affichent un faible rendement de conversion et une faible stabilité. Avec le soutien du programme Actions Marie Skłodowska-Curie (MSCA), le projet HyPerGreen améliorera les couches minces et les interfaces des CSP à l’étain, ce qui permettra d’atteindre une efficacité de plus de 20 %. L’amélioration des CSP à l’étain est essentielle pour l’utilisation généralisée de la technologie durable de l’étain-perovskite.
Objectif
Perovskite solar cells (PSCs) are a promising alternative to silicon SCs, currently dominating the photovoltaic market. The skyrocket efficiency of lead-based PSCs is achieved due to their ease of production and unique electro-optical properties. However, lead toxicity limits the sustainability and broad application of perovskite technology. Environmentally-friendly tin-PSCs are the most efficient alternative to lead-based PSCs. Low conversion efficiency and stability are two challenges of tin-PSCs caused by defects in thin-films and selective interfaces. Advanced characterisation is needed to understand and prevent sources of charge losses in tin-PSCs.
In the project HyPerGreen, Artem Musiienko (AM) will control parameters of thin-film and heterojunctions in tin-PSCs and use advanced experimental methods to characterise them. To improve thin-films, AM will incorporate different cations in tin-perovskite. To understand the influence of additives on tin-perovskite properties, AM will use photo Hall effect measurement (PHM) based on charge transport in the magnetic field under light illumination. PHM will give deep insight into the effect of composition variation on material properties.
To effectively collect free carriers, AM will use interface optimization with different selective layers. To understand charge separation and optimise charge transport material, AM will apply surface photovoltage (SPV), which gives valuable information on the charge separation quality at the interface. Using these innovative approaches, AM will develop pathways leading to stable tin-PSCs with an efficiency of over 20%.
The host Prof. Abate group at HZB is a global leader in the development of tin-PSCs, with outstanding expertise in tin-PSC technology. AM will contribute his knowledge in semiconductor characterisation by PHM and SPV. This project aims to provide industrially relevant strategies for tin-PSC improvement essential for the widespread use of sustainable tin-perovskites.
Champ scientifique
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régime de financement
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinateur
14109 Berlin
Allemagne