Project description
Planting seeds for new soil fertility framework
Soil degradation is widespread and diverse. Low soil fertility is the result of increased crop production and poor nutrient practices, and it is a major challenge in Europe and beyond. Researchers are studying the soil’s ability to sustain plant growth by providing essential plant nutrients and favourable chemical, physical, and biological characteristics. This is the sign of soil fertility. The Marie Skłodowska-Curie Actions (MSCA) project RE-NOURISH will study the implications of anthropogenic nutrient loading or animal dynamics during ecosystem restoration projects. It will develop a framework that quantifies the redistribution of multiple nutrients across landscapes by different groups of large mammals. It will test the model in nutrient-deficient and nutrient-polluted environments.
Objective
Declining soil fertility represents one of humanity’s major challenges in the 21st century. In the past, large vertebrate animals played a crucial role in transporting nutrients between ecosystems, supporting a more fertile planet. Today, however, species extinctions, diminished population abundances and constraints on animal movement have reduced animal-mediated nutrient transport by >90% compared to the late-Pleistocene. In contrast, anthropogenic use of certain nutrients (nitrogen [N], phosphorus [P] and potassium [K]) vastly exceeds planetary boundaries. Consequently, some areas of the world experience excessive nutrient pollution and others nutrient depletion.
Agricultural abandonment trajectories provide opportunities for large-scale ecosystem restoration, including rewilding of large vertebrates. However, where humans have altered nutrient geographies, redistribution by wild animals may have unintended consequences for nearby ecosystems, including to plant productivity, carrying capacity, carbon storage and endemic competitive advantages. Consequently, changes to either anthropogenic nutrient loading or to animal dynamics during ecosystem restoration projects can have far-reaching implications.
RE-NOURISH will develop an agent-based modelling framework that quantifies the redistribution of multiple nutrients across landscapes by different guilds of large mammals. Crucially, this model will include the direct and indirect influences of predators – an essential, but often overlooked aspect of nutrient redistribution in terrestrial landscapes. The RE-NOURISH framework will then be applied to two restoration case studies in (i) nutrient-deficient and (ii) nutrient-polluted environments. This transformative approach will directly help conservation practitioners achieve goals of ecological integrity and contribution to climate stability. Results will be disseminated via published papers, interactive workshops, conference presentations and popular articles.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyenvironmental engineeringecosystem-based managementecological restoration
- natural scienceschemical sciencesinorganic chemistryalkali metals
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
- natural sciencesbiological sciencesecologyecosystems
- natural sciencesbiological scienceszoologymammalogy
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
8000 Aarhus C
Denmark