Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

INducing TRionic gaIn in two-dimensional semicoNductors by local StraIn and Charge manipulation

Project description

Study investigates trion formation and properties in 2D materials

Coherent light sources are playing an essential role in countless everyday technologies. The increasing demand to reduce the energy consumption is pushing the laser technology toward the design of miniaturised coherent light sources operating with minimal power. In this context, full control over trion density (i.e. localised excitations consisting of three charged particles) in 2D semiconductors could enable optical amplification and lasing at unprecedented excitation levels. Funded by the Marie Skłodowska-Curie Actions program, the INTRINSIC project aims to further understand photoexcitation-based trion formation, their concentration and stability in functionalized 2D semiconductors by controlling carrier doping, defect density, and strain fields at the nanoscale level.

Objective

The ability to manipulate excitonic complexes in 2D-materials is of fundamental importance for the development of excitonic based optoelectronic devices operating in low-carrier density, low-power regimes. Correlating locally variable quantities with emission properties of excitonic complexes on sub-diffraction length scale could enable on-demand control of the mutual conversion between excitons and trions. In particular, control over trion density upon photoexcitation in a functionalized 2D-material disclose the possibility to achieve trionic optical gain, that is, a condition of optical gain sustained by the difference between trion and pre-doped electron density. As a peculiarity, trionic optical gain does not require global population inversion common to optical gain mechanisms of conventional semiconductors. Therefore, trion density control could enable optical amplification and lasing at unprecedented low levels of excitation. To this end, we aim to understand the photoexcitation dependent trion formation process, their abundance and stability upon variation of local quantities such as carrier doping, defects density and strain fields in 2D-materials. To pursue this goal we will implement a structural /spectroscopic correlated approach based on hyperspectral nano-imaging and far-field cryo-microscopy of 2D monolayers transferred on a plasmonic nanopillars array with controlled levels of charge doping and strain. Demonstration of trionic optical gain in such conditions will provide the necessary requirement for achieving trionic lasing. Laser feedback will be then realized by engineering the surface lattice resonance of a plasmonic nanopillar cavity to match the trionic peak gain wavelength.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

POLITECNICO DI TORINO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 86 375,04
Address
CORSO DUCA DEGLI ABRUZZI 24
10129 Torino
Italy

See on map

Region
Nord-Ovest Piemonte Torino
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0