Descripción del proyecto
Un estudio investiga la formación de triones y sus propiedades en materiales bidimensionales
Las fuentes de luz coherentes desempeñan un papel esencial en innumerables tecnologías cotidianas. La creciente demanda para reducir el consumo de energía está impulsando la tecnología láser hacia el diseño de fuentes de luz coherentes miniaturizadas que funcionen con una potencia mínima. En este contexto, el control total de la densidad de triones (es decir, excitaciones localizadas y formadas por tres partículas cargadas) en semiconductores bidimensionales podría permitir la amplificación óptica y el láser a niveles de excitación inauditos. El objetivo del proyecto INTRINSIC, financiado por las Acciones Marie Skłodowska-Curie, es profundizar en la formación de triones por fotoexcitación, su concentración y estabilidad en semiconductores bidimensionales funcionalizados mediante el control del dopaje de portadores, la densidad de defectos y los campos de deformación a escala nanométrica.
Objetivo
The ability to manipulate excitonic complexes in 2D-materials is of fundamental importance for the development of excitonic based optoelectronic devices operating in low-carrier density, low-power regimes. Correlating locally variable quantities with emission properties of excitonic complexes on sub-diffraction length scale could enable on-demand control of the mutual conversion between excitons and trions. In particular, control over trion density upon photoexcitation in a functionalized 2D-material disclose the possibility to achieve trionic optical gain, that is, a condition of optical gain sustained by the difference between trion and pre-doped electron density. As a peculiarity, trionic optical gain does not require global population inversion common to optical gain mechanisms of conventional semiconductors. Therefore, trion density control could enable optical amplification and lasing at unprecedented low levels of excitation. To this end, we aim to understand the photoexcitation dependent trion formation process, their abundance and stability upon variation of local quantities such as carrier doping, defects density and strain fields in 2D-materials. To pursue this goal we will implement a structural /spectroscopic correlated approach based on hyperspectral nano-imaging and far-field cryo-microscopy of 2D monolayers transferred on a plasmonic nanopillars array with controlled levels of charge doping and strain. Demonstration of trionic optical gain in such conditions will provide the necessary requirement for achieving trionic lasing. Laser feedback will be then realized by engineering the surface lattice resonance of a plasmonic nanopillar cavity to match the trionic peak gain wavelength.
Ámbito científico
Palabras clave
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global FellowshipsCoordinador
16163 Genova
Italia