Project description
Designs for more robust microbial strains
Microbial robustness is important for sustainable and efficient biotechnology-based production. Producer strains created in the laboratory do not always respond well to industrial conditions like large fermentation volumes, accumulation of toxic intermediates and media acidification. The Marie Skłodowska-Curie Actions (MSCA) project BioCircus will address the issue caused by the lack of robustness in engineered microbial strains. Specifically, it will explore the construction of biosensor and dynamic regulation circuits that measure and control the production of the target molecule. It will also use machine learning predictive models and automation to improve these circuits. Naringenin, a key molecule of the flavonoid family, will be used as proof-of-principle molecule. E. coli will be used as model organism.
Objective
Biological production of chemicals and materials is a renewable and economically viable alternative to the current chemical processes, easing the transition towards a biology-based circular economy. The current biomanufacturing industry faces a scalability problem. Frequently, producer strains created in the laboratory do not respond well to industrial conditions (e.g. large fermentation volumes, accumulation of toxic intermediates, media acidification, etc.). The goal of BioCircus is to address the issue caused by the lack of robustness of the engineered microbial strains. BioCircus is based on three main research pillars: (1) the construction of biosensor and dynamic regulation circuits that measure and control the production of the target molecule, (2) the use of machine learning predictive models and automation to improve these circuits and (3) validating the designed strains in pre-industrial conditions, closer than standard molecular biology laboratory procedures to real-world bioproduction operations. Naringenin, a key molecule of the flavonoid family, will be used in as proof-of-principle molecule. E. coli will be used as model organism. The design and construction of biosensors and dynamic regulation circuits controlling naringenin production is expected to support the development of methodologies and tools suitable for any other detectable metabolite. BioCircus will produce academic and industrial impacts that will boost the bioproduction field by enabling a shorter strain time-to-market for a wide variety of adaptive and scalable microbial bioproducer strains.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- social sciences sociology industrial relations automation
- engineering and technology industrial biotechnology bioprocessing technologies fermentation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46022 VALENCIA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.