Project description
Designs for more robust microbial strains
Microbial robustness is important for sustainable and efficient biotechnology-based production. Producer strains created in the laboratory do not always respond well to industrial conditions like large fermentation volumes, accumulation of toxic intermediates and media acidification. The Marie Skłodowska-Curie Actions (MSCA) project BioCircus will address the issue caused by the lack of robustness in engineered microbial strains. Specifically, it will explore the construction of biosensor and dynamic regulation circuits that measure and control the production of the target molecule. It will also use machine learning predictive models and automation to improve these circuits. Naringenin, a key molecule of the flavonoid family, will be used as proof-of-principle molecule. E. coli will be used as model organism.
Objective
Biological production of chemicals and materials is a renewable and economically viable alternative to the current chemical processes, easing the transition towards a biology-based circular economy. The current biomanufacturing industry faces a scalability problem. Frequently, producer strains created in the laboratory do not respond well to industrial conditions (e.g. large fermentation volumes, accumulation of toxic intermediates, media acidification, etc.). The goal of BioCircus is to address the issue caused by the lack of robustness of the engineered microbial strains. BioCircus is based on three main research pillars: (1) the construction of biosensor and dynamic regulation circuits that measure and control the production of the target molecule, (2) the use of machine learning predictive models and automation to improve these circuits and (3) validating the designed strains in pre-industrial conditions, closer than standard molecular biology laboratory procedures to real-world bioproduction operations. Naringenin, a key molecule of the flavonoid family, will be used in as proof-of-principle molecule. E. coli will be used as model organism. The design and construction of biosensors and dynamic regulation circuits controlling naringenin production is expected to support the development of methodologies and tools suitable for any other detectable metabolite. BioCircus will produce academic and industrial impacts that will boost the bioproduction field by enabling a shorter strain time-to-market for a wide variety of adaptive and scalable microbial bioproducer strains.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsbiosensors
- social sciencessociologyindustrial relationsautomation
- engineering and technologyindustrial biotechnologybioprocessing technologiesfermentation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
46022 Valencia
Spain