European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Accurate and efficient ab initio Quantum Chemistry calculations on current and near-term noisy intermediate-scale Quantum Computers for relevant chemical problems

Description du projet

Exploiter les ordinateurs quantiques actuels et mis au point dans un futur proche pour résoudre les problèmes de chimie quantique

Le terme «ordinateur quantique bruité de taille intermédiaire» (NISQ) a été proposé il y a quelques années. Il fait référence aux dispositifs comportant un nombre intermédiaire de qubits (de 50 à quelques centaines) dont les portes quantiques bruitées empêchent d’atteindre la tolérance aux pannes, ce qui limite la taille des circuits quantiques pouvant exécuter des calculs de manière fiable. Ils constituent une étape sur la voie d’une informatique quantique complètement tolérante aux pannes comportant des millions de qubits. Fort du soutien du programme Actions Marie Skłodowska-Curie, le projet QC-SQUARED montrera que les calculs de chimie quantique peuvent tirer parti de ce matériel NISQ par rapport à l’informatique classique. L’équipe du projet élaborera des méthodes et des algorithmes qui permettent de tirer parti de ces avantages, ouvrant ainsi la voie à l’exploitation des technologies NISQ existantes.

Objectif

Quantum computing has the potential to provide an exponential speedup
compared to classical computers, but the practical implementation is still in its infancy.
Two central questions are:
(1) in which field the current noisy intermediate-scale quantum (NISQ) hardware
can provide benefits compared to classical computers and
(2) which methods and algorithms enable this advantage?
The aim of this project is to answer these questions by enabling
accurate and efficient Quantum Chemistry calculations on current and near-term Quantum Computers
for relevant chemical and physical problems.
This paves the road to simulate strongly correlated electron systems of
high scientific and economical interest, where
accurate approaches are needed to understand groundbreaking chemical and physical phenomena,
like high-temperature superconductivity, photosynthesis or nitrogen fixation.
It will be achieved by developing and implementing novel quantum algorithms
based on the combination of the transcorrelated (TC) method
and a complete active space self-consistent field (CASSCF) embedding approach.
The TC method will reduce the necessary quantum resources by
providing accurate results for a small strongly correlated region already with small basis sets.
While CASSCF will allow to target more realistic systems by embedding the
correlated region self-consistently in a larger environment, which is efficiently described
by inexpensive mean-field approaches.
This project has the potential to go beyond the state-of-the-art by:
(a) pushing the boundaries of currently possible quantum chemical calculations,
allowing further theoretical understanding and practical design of quantum materials
and (b) pave the road toward scientific and economical relevance of quantum computing
already in the NISQ era.

Mots‑clés

Coordinateur

CHALMERS TEKNISKA HOGSKOLA AB
Contribution nette de l'UE
€ 222 727,68
Adresse
-
412 96 GOTEBORG
Suède

Voir sur la carte

Région
Södra Sverige Västsverige Västra Götalands län
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
Aucune donnée

Partenaires (1)