Descrizione del progetto
Sfruttare i computer quantici attuali e del prossimo futuro per risolvere problemi di chimica quantistica
Alcuni anni fa è stato proposto il termine NISQ (Noise Intermediate-Scale Quantum), per indicare dispositivi con un numero di qubit intermedio (da 50 a qualche centinaia) le cui porte quantistiche rumorose non permettono di raggiungere la tolleranza ai guasti, limitando la dimensione dei circuiti quantistici in grado di eseguire calcoli in modo affidabile. Si tratta di un passo verso i calcoli quantistici completamente tolleranti ai guasti, con milioni di qubit. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto QC-SQUARED dimostrerà che i calcoli della chimica quantistica possono beneficiare da questo hardware NISQ, rispetto ai metodi di calcolo tradizionali. Il team svilupperà metodi e algoritmi che permettano di raggiungere questi vantaggi, aprendo la strada allo sfruttamento delle tecnologie NISQ esistenti.
Obiettivo
Quantum computing has the potential to provide an exponential speedup
compared to classical computers, but the practical implementation is still in its infancy.
Two central questions are:
(1) in which field the current noisy intermediate-scale quantum (NISQ) hardware
can provide benefits compared to classical computers and
(2) which methods and algorithms enable this advantage?
The aim of this project is to answer these questions by enabling
accurate and efficient Quantum Chemistry calculations on current and near-term Quantum Computers
for relevant chemical and physical problems.
This paves the road to simulate strongly correlated electron systems of
high scientific and economical interest, where
accurate approaches are needed to understand groundbreaking chemical and physical phenomena,
like high-temperature superconductivity, photosynthesis or nitrogen fixation.
It will be achieved by developing and implementing novel quantum algorithms
based on the combination of the transcorrelated (TC) method
and a complete active space self-consistent field (CASSCF) embedding approach.
The TC method will reduce the necessary quantum resources by
providing accurate results for a small strongly correlated region already with small basis sets.
While CASSCF will allow to target more realistic systems by embedding the
correlated region self-consistently in a larger environment, which is efficiently described
by inexpensive mean-field approaches.
This project has the potential to go beyond the state-of-the-art by:
(a) pushing the boundaries of currently possible quantum chemical calculations,
allowing further theoretical understanding and practical design of quantum materials
and (b) pave the road toward scientific and economical relevance of quantum computing
already in the NISQ era.
Campo scientifico
- natural scienceschemical sciencesphysical chemistryquantum chemistry
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesbiological sciencesbotany
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Parole chiave
Programma(i)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Meccanismo di finanziamento
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinatore
412 96 GOTEBORG
Svezia