Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Artificial Intelligence for Traffic Safety between Vehicles and Vulnerable Road Users

Project description

AI keeps vulnerable road users safe

In big cities, busy intersections and shared spaces pose a high risk to vulnerable road users like pedestrians and cyclists. Their protection is a challenge for traffic safety officials. However, advances in AI are paving the way for a solution. The EU-funded VeVuSafety project will harness AI methodologies to create a privacy-aware deep learning framework that learns road users’ behaviour in various mixed traffic situations. Advancing a 3D environment model is the next step. Also, an end-to-end deep learning framework using camera data will be built on this environment model for multimodal trajectory prediction, anomaly detection and potential risk classification.

Objective

Traffic safety is the fundamental criterion for vehicular environments and many artificial intelligence-based systems like self-driving cars. There are places, e.g. intersections and shared spaces, in the urban environment with high risks where vehicles and vulnerable road users (VRUs) such as pedestrians and cyclists directly interact with each other. By advancing starte-of-the-art artificial intelligence methodologies, this project VeVuSafety aims to build a privacy-aware deep learning framework to learn road users’ behaviour in various mixed traffic situations for the safety between vehicles and VRUs. VeVuSafety proposes a 3D environment model based on 3D point cloud for privacy protection — private information like license plates and face is anonymized. Then, within this environment model, an end-to-end deep learning framework using camera data will be built for multimodal trajectory prediction, anomaly detection, and potential risk classification based on deep generative models such as Variational Auto-Encoder. Additionally, an active privacy mechanism will also be adopted by application of the differential privacy mechanism to help the deep learning models prevent model-inversion attack. Moreover, the framework’s generalizability will be investigated by exploring the Normalizing Flows approach for domain adaption. The framework’s performance will be validated at different intersections and shared spaces using real-world traffic data. Besides road user safety and privacy, VeVuSafety can help traffic engineers and city planners to better estimate the design of traffic facilities in order to achieve a road-user-friendly urban traffic environment. Furthermore, the success of VeVuSafety will enhance the fellow’s scientific knowledge and project management skills to become an artificial intelligence expert for traffic safety and Intelligent Transportation Systems.

Coordinator

UNIVERSITEIT TWENTE
Net EU contribution
€ 187 624,32
Address
DRIENERLOLAAN 5
7522 NB Enschede
Netherlands

See on map

Region
Oost-Nederland Overijssel Twente
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data