Skip to main content
European Commission logo print header

Adipose tissue-Liver Macrophage CrossTalk in NASH and Fibrosis

Project description

The role of macrophages in liver inflammation and fibrosis

Non-alcoholic fatty liver disease (NAFLD) is caused by the accumulation of fat in the liver which can cause inflammation and damage. Some individuals may develop an aggressive form of NAFLD known as develop nonalcoholic steatohepatitis (NASH) associated with cirrhosis and liver failure. Emerging evidence underscores the role of adipose tissue macrophages (ATMs) in disease pathology. Funded by the Marie Skłodowska-Curie Actions (MSCA) programme, the MacTalk project aims to delineate the phenotype and localisation of macrophage subsets in NASH. The working hypothesis is that ATMs change hepatic macrophage composition, triggering fibrosis. Results will contribute to the identification of mediators of liver inflammation and fibrosis, opening avenues for new treatments.


Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and damage. This drives liver inflammation, promoting the progression to non-alcoholic steatohepatitis (NASH) and liver fibrosis. There are currently no approved therapies for NASH and fibrosis, which is in part due to a lack of knowledge of the immunological events underpinning NASH and fibrosis. The pathogenesis of NASH is strongly influenced by crosstalk with other tissues. There is increasing evidence that specifically obese adipose tissue macrophages (ATMs) are directly linked to liver pathology. In this respect, the host lab has shown that obese ATMs increase hepatic macrophage number. However, the exact changes in macrophage subsets and phenotypes were not investigated. I recently demonstrated that in NASH liver macrophages display large heterogeneity in phenotype and tissue localization and this plays a key role in NASH-associated liver fibrosis. Based on this combined preliminary data generated by the host lab and me, I hypothesize that ATMs alter hepatic macrophage composition and consequently affect the progression of NASH to liver fibrosis. By combining the mouse models and expertise available in the host lab and advanced technology present at the host institute, with my expertise in detailed immunophenotyping of the liver in NASH and fibrosis, I will address this innovative hypothesis in great detail. To bridge the translational gap from animal studies, I will investigate the potential contribution of ATMs to hepatic inflammation and fibrosis in humans by using unique fresh paired adipose tissue and liver biopsies available through the clinical network of the host lab. MacTalk integrates the scientific and technical expertise of both me and the host lab, creating a unique framework to identify novel mediators of hepatic inflammation and fibrosis. Furthermore, MacTalk will lay a strong foundation for my future career as independent researcher in the field of liver fibrosis.


Net EU contribution
€ 203 464,32
6200 MD Maastricht

See on map

Zuid-Nederland Limburg (NL) Zuid-Limburg
Activity type
Higher or Secondary Education Establishments
Total cost
No data