Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Model theory, locally compact groups and solution of Hilbert's 5th problem

Descripción del proyecto

Un estudio analiza la conexión entre la geometría y la teoría de modelos

¿Cuántas simetrías puede reconocer la teoría de modelos? Para responder a esta pregunta, el equipo del proyecto Hilbert5th vs models, financiado con fondos europeos, utilizará técnicas avanzadas de la teoría de modelos para la clase de grupos localmente compactos que surgen de la solución del quinto problema de Hilbert. Después de proporcionar una descripción general (de primer orden) modelo-teórica de grupos localmente compactos, los investigadores estudiarán la relación entre la teoría de modelos y los grupos localmente compactos. En la siguiente etapa, los investigadores pondrán en práctica técnicas de la llamada «teoría de la estabilidad geométrica» en una clase de grupos localmente compactos, por ejemplo, en grupos localmente compactos que son límites proyectivos de grupos de Lie y que no consisten en subgrupos pequeños.

Objetivo

The main goal of the project is to apply advanced techniques from the model theory (a branch of mathematical logic) to the class of locally compact groups arising from the solution of Hilbert's 5th problem (so at the end, to the class of Lie groups), to answer the following question: how much geometry can model theory recognize? There does not exist a general (first-order) model-theoretic description of the locally compact groups, thus our first goal will be to develop such a description. Then, we will study how notions from these two corners of mathematics, i.e. model theory and locally compact groups, correspond to each other. For example, we will try to enrich the classification of locally compact and Lie groups by translating the dividing lines from the model-theoretic stability hierarchy. In the next stage, machinery from the so called geometric (neo)stability theory will be deployed in a tame class of locally compact groups, for example in the class of locally compact groups being projective limits of Lie groups and not having small subgroups (so in the groups from the solution of Hilbert's 5th problem). In this spirit, one could consider the definable homogeneous space coming from the Group Configuration Theorem, which is a part of the aforementioned machinery, and try to relate it to the unsolved Hilbert-Smith conjecture - this will be one of our milestones.

In short, we aim to find connections between model-theoretic theorems of geometric nature and classical theorems on the Lie groups, so theorems which depend on the geometry of Lie groups. After understanding these connections, we want to transport techniques from the model theory into the locally compact and Lie groups and vice versa.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

TECHNISCHE UNIVERSITAET DRESDEN
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 189 687,36
Dirección
HELMHOLTZSTRASSE 10
01069 DRESDEN
Alemania

Ver en el mapa

Región
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Socios (1)

Mi folleto 0 0