Projektbeschreibung
Ein neues Modell für bessere Batterien für Elektrofahrzeuge
Elektrofahrzeuge sind die Zukunft. Doch was hält die Zukunft für deren Batterien bereit? Damit diese Batterien weniger kompliziert und einfacher aufladbar werden, muss das Batteriemanagementsystem (BMS) zur Kontrolle, Steuerung und zum Schutz der Lithium-Ionen-Akkus verbessert werden. Batterien in Elektrofahrzeugen sind rauen Betriebszyklen und schwankenden Umweltbedingungen ausgesetzt, die sehr komplizierte Wechselwirkungen auslösen. Daher wird das EU-finanzierte Projekt DeepBMS ein neues Modell entwickeln, um die BMS-Funktionen in Elektrofahrzeugen auszubauen. Effiziente Algorithmen auf der Grundlage des tiefen Verstärkungslernens werden das verworrene, zeitlich veränderliche Verhalten der Batterie erfassen. DeepBMS wird zudem die Zuverlässigkeit und die Nutzungszeit der Batterien verbessern, indem die Genauigkeit der Schätzungen bei verschiedensten Temperaturen und über die gesamte Nutzungsdauer der Batterien präzisiert wird.
Ziel
Battery Management System (BMS) plays a pivotal role in monitoring, control, and protecting the Electric Vehicle (EV) Lithium-ion battery packs. In vehicular applications, batteries are usually subjected to harsh operating cycles and varying environmental conditions leading to very complicated interactions of different aging factors and unforeseeable modeling uncertainties. Therefore, the classical model-based techniques cannot completely handle the foregoing factors, which always leave an unwanted state estimation error in the BMS. This project intends to apply a multidisciplinary approach by combining the advantages of deep reinforcement learning and classical model-based techniques to improve the BMS functionality in EVs. Specifically, DeepBMS aims to: 1-Develop efficient deep reinforcement learning-based algorithms which are able to capture the convoluted time-varying behavior of battery and can gradually improve themselves by learning in real-time 2- Combine the beneficial features of model-based and data-driven techniques to improve the state estimation accuracy in a wide temperature range and over the full life span of the batteries, thereby increasing the reliability and extending the battery lifetime. The interdisciplinary nature of DeepBMS is very strong, involving a combination of control and state estimation theory, power electronics, battery storage systems, and machine learning. The supervisor and candidate have excellent complemental research experiences in these fields providing the necessary competencies to bring the project to successful completion. The project ensures two-way transfer of knowledge including training of the candidate in cutting-edge advanced techniques in a state-of-the-art laboratory, which improves his future career prospects. Likewise, DeepBMS is in line with the EU strategic action plan on batteries and its results have a great potential to be further developed at the fundamental and applied levels through follow-up research.
Wissenschaftliches Gebiet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringelectric energy
- natural scienceschemical scienceselectrochemistryelectric batteries
- social sciencessocial geographytransportelectric vehicles
- natural sciencescomputer and information sciencesartificial intelligencemachine learningreinforcement learning
Programm/Programme
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-AG-UN - HORIZON Unit GrantKoordinator
9220 Aalborg
Dänemark