European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Efficient Detection of Squeezed Light on Nanophotonic Chips using Subwavelength-Engineered Superconducting Nanowire Avalanche Photodetectors

Descripción del proyecto

Nuevos sistemas fotónicos integrados para detectar la luz comprimida de forma eficaz

Los estados comprimidos de la luz presentan correlaciones cuánticas que originan incertidumbres de medición más pequeñas que los estados clásicos correspondientes. Estas características cuánticas se pueden aprovechar para realizar mediciones ópticas de alta precisión, así como en la radiometría y la distribución cuántica de claves. Los chips nanofotónicos actuales que utilizan detectores monofotónicos de nanohilos superconductores integrados en la guía de ondas tienen una capacidad limitada para detectar luz comprimida, sobre todo debido a las pérdidas de acoplamiento de los acopladores de chip de fibra y a las interfaces entre la guía de ondas y el detector monofotónico de nanohilos superconductores. El equipo del proyecto ESSENS, financiado por las Acciones Marie Skłodowska-Curie, desarrollará un sistema fotónico integrado para detectar de forma eficaz luz comprimida en las longitudes de onda empleadas en el campo de las telecomunicaciones. Los sistemas propuestos posibilitarán usos de la luz comprimida interesantes en aplicaciones como la simulación cuántica, la comunicación y la detección con cientos de detectores e interferómetros en chips monolíticos altamente integrados con una estabilidad casi perfecta.

Objetivo

Quantum photonics has become a key driver for the development of novel applications—such quantum information processing and sensing—that leverage quantum effects to open new possibilities beyond classical capabilities. Squeezed states of light are particularly promising for such applications and have been employed, e.g. to conduct Gaussian boson sampling experiments. Despite the success of these experiments, the use of bulk optical components hinders scalability and phase stabilization. Thus, higher levels of photonic integration are strongly desired. However, the exploitation of squeezed light, which critically relies on efficient detection, has not yet been achieved using nanophotonic chips because of the limited efficiency of the required fiber-chip couplers and single-photon detectors (SPDs).

In this project, an optical fiber–accessible, photonic integrated system will be implemented to demonstrate on-chip detection of squeezed light at telecom wavelengths. To accomplish this goal, two approaches will be employed to assist fiber-chip couplers and waveguide-integrated superconducting nanowire SPDs, enabling access to previously inaccessible regions of the design space: subwavelength grating (SWG) metamaterials and direct-laser-writing (DLW) fabrication technology. The outcome of this project will break new ground for exploiting squeezed states for applications in quantum simulation, communication, and sensing with hundreds of detectors and interferometers on highly integrated, monolithic chips with near perfect phase stability.

This project will be completed in a leading interdisciplinary research group. The applicant’s background in integrated photonics and SWG metamaterial engineering will be combined with the expertise on quantum detectors and the DLW nanofabrication capabilities of the host group. The proposed work will expand the applicant’s experience, skills and professional networks, re-enforcing the advance of his career as an independent researcher.

Coordinador

UNIVERSITAET MUENSTER
Aportación neta de la UEn
€ 173 847,36
Dirección
SCHLOSSPLATZ 2
48149 MUENSTER
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Münster Münster, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
Sin datos

Socios (1)