Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

The structure and growth of Hochschild (co)homology

Descripción del proyecto

Estudio de la homología y la cohomología de Hochschild

En el proyecto Hochschild, financiado por las Acciones Marie Skłodowska-Curie, se combinarán métodos del álgebra conmutativa, la teoría de la representación y la teoría de la homotopía racional a fin de mejorar la comprensión de la homología y la cohomología de Hochschild. El estudio se centrará en su interacción profunda con el complejo cotangente. Uno de los objetivos principales del proyecto es demostrar que los anillos de intersección no completos exhiben un crecimiento exponencial en su homología de Hochschild. Los resultados se aplicarán a la conjetura de Vigué-Poirrier sobre espacios racionalmente hiperbólicos y al problema geodésico cerrado de Gromov. Los mismos métodos innovadores se utilizarán para proporcionar información nueva sobre la segunda conjetura de Quillen relativa al complejo cotangente.

Objetivo

"This project will combine methods from commutative algebra, representation theory and rational homotopy theory to improve our understanding of Hochschild homology and cohomology, especially the open problem of determining their growth. At the project's core is the deep interplay between Hochschild cohomology and the cotangent complex, a bridge that will be exploited in both directions. I will use techniques pioneered in his solution of Vasconcelos' conjecture, which were further developed in my work with Iyengar to drastically improve our knowledge on the cotangent complex. Concretely, the first objective is to show that non-complete intersection rings exhibit exponential growth in their Hochschild homology; through the theory of free loop spaces this will be applied to Vigu-Poirrier's conjecture on rationally hyperbolic spaces, and to Gromov's closed geodesic problem. Second, the same novel methods will also be used to shed light on the long out of reach Second Conjecture of Quillen on the cotangent complex. Third, I will develop the theory of natural operations on Hochschild cohomology, filling a gap in the state-of-the-art and adding a tool to be applied in the first two objectives. Each of these problems directly impacts our understanding of the homological behaviour of complete intersection rings, and will indirectly be used to develop and unify the theory of ""non-commutative complete intersection rings"" which mirror their behaviour. The proposed project will be hosted a world focal point for homotopical methods in algebra, and supervised by two leading experts in algebra and topology; it will raise my research profile to the top level, establishing my position as a leading figure at the intersection of commutative algebra, non-commutative algebra, and topology."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

KOBENHAVNS UNIVERSITET
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 214 934,40
Dirección
NORREGADE 10
1165 KOBENHAVN
Dinamarca

Ver en el mapa

Región
Danmark Hovedstaden Byen København
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0