Descrizione del progetto
Uno studio sull’omologia e la coomologia di Hochschild
Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto Hochschild combinerà metodi provenienti dall’algebra commutativa, dalla teoria della rappresentazione e dalla teoria dell’omotopia razionale per migliorare la comprensione dell’omologia e della coomologia di Hochschield. Lo studio si concentrerà sulla loro profonda interazione con il complesso cotangente. Uno degli obiettivi principali del progetto consiste nel dimostrare che gli anelli di intersezione non completi manifestano una crescita esponenziale nella loro omologia di Hochschild. I risultati saranno applicati alla congettura di Vigué-Poirrier sugli spazi razionalmente iperbolici e al problema della geodetica chiusa di Gromov. I medesimi metodi innovativi saranno impiegati per gettare luce sulla seconda congettura di Quillen relativa al complesso cotangente.
Obiettivo
"This project will combine methods from commutative algebra, representation theory and rational homotopy theory to improve our understanding of Hochschild homology and cohomology, especially the open problem of determining their growth. At the project's core is the deep interplay between Hochschild cohomology and the cotangent complex, a bridge that will be exploited in both directions. I will use techniques pioneered in his solution of Vasconcelos' conjecture, which were further developed in my work with Iyengar to drastically improve our knowledge on the cotangent complex. Concretely, the first objective is to show that non-complete intersection rings exhibit exponential growth in their Hochschild homology; through the theory of free loop spaces this will be applied to Vigu-Poirrier's conjecture on rationally hyperbolic spaces, and to Gromov's closed geodesic problem. Second, the same novel methods will also be used to shed light on the long out of reach Second Conjecture of Quillen on the cotangent complex. Third, I will develop the theory of natural operations on Hochschild cohomology, filling a gap in the state-of-the-art and adding a tool to be applied in the first two objectives. Each of these problems directly impacts our understanding of the homological behaviour of complete intersection rings, and will indirectly be used to develop and unify the theory of ""non-commutative complete intersection rings"" which mirror their behaviour. The proposed project will be hosted a world focal point for homotopical methods in algebra, and supervised by two leading experts in algebra and topology; it will raise my research profile to the top level, establishing my position as a leading figure at the intersection of commutative algebra, non-commutative algebra, and topology."
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura algebra
- scienze naturali matematica matematica pura topologia topologia algebrica
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-MSCA-2021-PF-01
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
1165 KOBENHAVN
Danimarca
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.