Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Explicit methods for rational points on curves and their Jacobians

Obiettivo

"The theory of rational points on curves and their Jacobians is distinguished by being both attractive and notoriously difficult. Despite major theoretical advances, explicit methods are of particular importance in this area. For instance, the conjecture of Birch and Swinnerton-Dyer (BSD), one of the Millennium Prize problems, was formulated based on numerical evidence. A proof of the strong version of this conjecture for abelian varieties seems out of reach at present, and even the verification in examples was, until recently, only possible in dimension 1.

Besides being interesting in its own right, the importance of explicit methods for the computation of the rational points on curves stems from the fact that many moduli problems can be reduced to such computations. Therefore, explicit methods can be used to solve theoretical problems, but in the other direction, theoretical advances often lead to improved explicit methods. One example is the recent computation of the rational points on the ""cursed curve"" X_ns^+(13) using the quadratic Chabauty (QC) method, an explicit special case of Kim's non-abelian Chabauty program.

We propose two research projects, connected by height theory, to significantly advance the state of the art in explicit methods for rational points on curves and Jacobians. In the first one, we will develop an explicit theory of heights to compute Mordell-Weil groups of Jacobians of non-hyperelliptic curves of genus 3. We will use it for the verification of the strong BSD conjecture for modular examples, going beyond the hyperelliptic case for the first time. In the second one, we will drastically increase the applicability of the QC method by removing several restrictive conditions, and apply it to Atkin-Lehner quotients of modular and Shimura curves, thereby solving several open moduli problems."

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2021-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

RIJKSUNIVERSITEIT GRONINGEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 187 624,32
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (1)

Il mio fascicolo 0 0