Project description
Updating climate models to predict compound extreme heat
In a warming world, extreme heat will become more likely. Current models, which regularly see record-shattering events, may not be able to keep up. The EU-funded TrueHeat project aims to solve this by creating a model that can predict the development of extreme compound heat events. The project will do this by creating a new framework to use data from different existing climate models and estimate future heat and heat-impact projections. It will compare the largest heat intensifications to whether heat extremes actually formed, as well as try to quantify what role chance plays in the build-up of rare extreme heat events.
Objective
In a warming world, extreme heat will become more likely, and more extreme. Extreme heat can lead to devastating socioeconomic and ecological impacts, especially when peak maximum temperatures occur together with other compounding stressors, such as high ambient humidity, lack of nighttime cooling, or persistent drought. When unprecedented record-shattering compound heat extremes occur, it raises the question of whether current climate models are able to sufficiently capture the risk and intensity of such unlikely but devastating extremes under present, and especially future climate conditions. Are climate model projections downplaying the risk and intensity of current and future heat due to missing or incorrect process representation? Can climate models sufficiently sample the most unlikely and extreme albeit still plausible events? And how would such utterly unlikely extreme compound heat develop? Which intensity, persistence, or compounding could it reach? These are the questions I will answer in TrueHeat, and by doing so I will produce the best-informed knowledge of the unlikely but plausible heat that we may come to experience in the near-term future, and how single instances of extreme heat can turn into their most devastating and unprecedented version.
To do this, I will first exploit the vast amount of existing large ensembles from different climate models that allows me to curate best-estimate future heat and heat-impact projections using superior evaluation and performance-weighting frameworks. Then I will use climate prediction ensembles to assess where chance brings the largest heat intensification, while determining why forecasted black swan heat extremes did not occur, or occurred in a less extreme form in reality. Lastly, I will generate novel targeted boosted large ensembles to quantify the role that chance plays in the intensification of extreme heat, and to fully sample the most unlikely but physically plausible worst-case heat storyline.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.