Objetivo
The efficacy of standard cancer therapies varies, and while some patients respond to a particular treatment, other patients do not gain any benefit. In response, an era of individualized cancer treatments is emerging which are based on the identification of biomarkers that characterize the state of a tumor. Many solid tumors (e.g. breast cancers and sarcomas) stiffen as they grow within a normal tissue. Tumor stiffening is a known factor leading to compromised efficacy of therapeutics. Repurposing drugs in order to alleviate tumor stiffness before the initiation of therapy has been tested in preclinical studies and has recently made it to the clinic. Despite recent success of these strategies, optimization of their application is understudied. Here, we aim to harness the power of deep learning (DL) methods in order to construct a robust biomarker based on ultrasound shear wave elastography (SWE). The biomarker will aim to: (i) predict the tumors response to treatment with chemo- and immuno-therapy and (ii) monitor treatment outcomes, in the case of strategies that target tumor stiffness. The project will capitalize on the existing strengths of the applicant in medical image processing and DL and the expertise of the host in tumor mechanopathology and in vivo experiments. In past experiments, the host acquired a large number of SWE tumor data, which will enable the development of the DL biomarker. Through the experimental part of the project, additional data on murine cancer models will be acquired enabling the validation of the biomarker. Formulation of the developed DL-derived biomarker in a user-friendly software will allow for potential clinical translation and further exploitation through IPR. The applicant will acquire new knowledge in the fields of cancer therapy, tumor biology and in vivo experimental design. The attained knowledge and skills will be instrumental to the applicants ambition to lead the field of artificial intelligence in biomedicine.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales informática y ciencias de la información software
- ciencias médicas y de la salud medicina clínica oncología
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1678 Nicosia
Chipre
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.