Descrizione del progetto
Studiare l’imparzialità nei modelli linguistici impiegati dalle app per comprendere il linguaggio
L’elaborazione del linguaggio naturale consente ai dispositivi digitali di analizzare, comprendere e riassumere il linguaggio umano, che si tratti di un testo o di un discorso. Gran parte dei sistemi si basano su modelli di linguaggio che si servono di un grande corpus di dati di addestramento ricavato automaticamente da fonti su Internet. Tuttavia, ciò li rende vulnerabili a pregiudizio, stereotipo ed esclusione non verificati. Il progetto FairER, finanziato dall’UE, esaminerà i modelli e le strategie di soluzione dell’elaborazione del linguaggio naturale in un contesto multilingue. Ne determinerà l’obiettività e l’inclusione non solo in termini demografici (ad esempio, razza, genere, età), ma anche a livello di alfabetizzazione. Il lavoro dovrebbe rendere più eque le applicazioni di elaborazione del linguaggio naturale e fornire le basi per un’indagine futura.
Obiettivo
Most of us use technology related to natural language processing (NLP) such as Google Search or virtual assistants in phones and other devices on a daily basis. Large-scale pre-trained language models hereby play a crucial role as they often form the basis of those technologies. Those models are trained on a large amount of training data (e.g. the entire English Wikipedia and the Brown corpus) which makes it impossible to curate the training corpus and potential stereotypes and biases will be implemented into the model, often without researchers noticing. This can lead to problematic and unfair behaviour towards certain demographics, often those who already suffer from implicit biases in society.
With FairER, I aim to get a deeper understanding of the inner workings of these language models. In particular, I want to investigate how well their solution strategies align with those of humans and whether this depends on certain demographic attributes such as gender, race, age but also reading abilities and level of education. I will also probe those language models for fairness and inclusiveness, i.e. find out whether the performance of an NLP application depends on demographic attributes of the user. Furthermore, I will conduct this project in a multilingual setting and apply interpretability methods to better understand the rationale behind a models decision.
The main impact of FairER will be a better understanding of how language models treat different demographics. These insights will help to improve the fairness and inclusiveness of NLP applications. Furthermore, the datasets I will record and publish along with the code will encourage other researchers to replicate my findings and continue this line of research. Ultimately, this project will have both a scientific and societal impact on the NLP community and users of NLP applications.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-MSCA-2021-PF-01
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
1165 KOBENHAVN
Danimarca
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.