Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Advancing nucleosynthesis predictions with modern supernova simulations

Descripción del proyecto

Modelos mejorados para estudiar los elementos químicos en las explosiones de supernovas

Las supernovas de colapso del núcleo son explosiones espectaculares de estrellas gigantes al final de su evolución que dan lugar a estrellas de neutrones y agujeros negros. Figuran entre los aceleradores de partículas más potentes del universo, desempeñan un papel fundamental en la comprensión de la composición química del universo y son laboratorios ideales para estudiar la física de los neutrinos y las partículas. El objetivo del proyecto NUC4SIM, financiado por las Acciones Marie Skłodowska-Curie, es mejorar los modelos más avanzados de predicción de la composición de las supernovas que no tratan a las estrellas como cuerpos de simetría esférica unidimensionales. En lugar de esto, los investigadores utilizarán cálculos tridimensionales de primer principio para estudiar con mayor precisión la composición de los eyectos de las explosiones. Además, estudiarán las implicaciones de las asimetrías en la emisión de neutrinos y las conversiones de sabores de neutrinos.

Objetivo

Core-collapse supernova (CCSN) explosions mark the end of the life of stars heavier than 10 times the mass of our sun, they play a crucial role for our understanding of the chemical composition of the universe and they are ideal laboratories for effects of neutrino and particle physics. Current research in astrophysics, astronomy and cosmochemistry that requires theoretical CCSN models still, however, relies predominantly on one-dimensional, i.e. spherically symmetric parameterized calculations. This project aims at advancing the state-of-the-art by calculating the composition of CCSN material based on the most recent, first-principles 3D simulations and by providing the results to the community in accordance with FAIR data management principles. The researcher's background in nuclear and neutrino physics will also allow him to study the implications of uniquely multi-dimensional asymmetries in the neutrino emission and the consequences of neutrino flavor conversions, a quantum effect that changes the particles' spectra, for nucleosynthesis, both of which have never been explored and may lead to observational signatures. To achieve the goals, a new and innovative framework for nucleosynthesis calculations at the Max-Planck Institute for Astrophysics in Garching will be developed, based on an open-source reaction network code, which the researcher has contributed to and that he will apply to unique cutting-edge models. The fellow will obtain in-depth knowledge about supernovae and learn state-of-the-art techniques from the world-class team of Prof. Janka and apply them. He will broaden the scope of his work, complemented by a career development plan, training courses and coaching as well as detailed dissemination and public outreach plans to maximize the impact of the project's outcome. The completion of the project will allow the fellow to become a mature and independent scientist, well-recognized in his field of research.

Coordinador

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Aportación neta de la UEn
€ 189 687,36
Dirección
HOFGARTENSTRASSE 8
80539 Munchen
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Kreisfreie Stadt
Tipo de actividad
Research Organisations
Enlaces
Coste total
Sin datos