Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Advancing nucleosynthesis predictions with modern supernova simulations

Descrizione del progetto

Modelli migliorati per lo studio degli elementi chimici in esplosioni di supernova

Le supernove con collasso del nucleo sono esplosioni drammatiche di stelle giganti alla fine della loro evoluzione che danno vita a stelle di neutroni e buchi neri. Sono tra i fenomeni maggiormente energetici dell’universo. Svolgono un ruolo fondamentale nella nostra comprensione della composizione chimica dell’universo e rappresentano laboratori ideali per lo studio della fisica dei neutrini e delle particelle. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto NUC4SIM si propone di promuovere modelli all’avanguardia per prevedere le composizioni di supernova che non trattano le stelle come corpi monodimensionali sfericamente simmetrici. I ricercatori utilizzeranno invece calcoli tridimensionali del primo principio per studiare in modo più accurato la composizione del materiale espulso durante l’esplosione. Studieranno anche le implicazioni delle asimmetrie di emissione dei neutrini e delle conversioni di sapore dei neutrini.

Obiettivo

Core-collapse supernova (CCSN) explosions mark the end of the life of stars heavier than 10 times the mass of our sun, they play a crucial role for our understanding of the chemical composition of the universe and they are ideal laboratories for effects of neutrino and particle physics. Current research in astrophysics, astronomy and cosmochemistry that requires theoretical CCSN models still, however, relies predominantly on one-dimensional, i.e. spherically symmetric parameterized calculations. This project aims at advancing the state-of-the-art by calculating the composition of CCSN material based on the most recent, first-principles 3D simulations and by providing the results to the community in accordance with FAIR data management principles. The researcher's background in nuclear and neutrino physics will also allow him to study the implications of uniquely multi-dimensional asymmetries in the neutrino emission and the consequences of neutrino flavor conversions, a quantum effect that changes the particles' spectra, for nucleosynthesis, both of which have never been explored and may lead to observational signatures. To achieve the goals, a new and innovative framework for nucleosynthesis calculations at the Max-Planck Institute for Astrophysics in Garching will be developed, based on an open-source reaction network code, which the researcher has contributed to and that he will apply to unique cutting-edge models. The fellow will obtain in-depth knowledge about supernovae and learn state-of-the-art techniques from the world-class team of Prof. Janka and apply them. He will broaden the scope of his work, complemented by a career development plan, training courses and coaching as well as detailed dissemination and public outreach plans to maximize the impact of the project's outcome. The completion of the project will allow the fellow to become a mature and independent scientist, well-recognized in his field of research.

Coordinatore

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contribution nette de l'UE
€ 189 687,36
Indirizzo
HOFGARTENSTRASSE 8
80539 Munchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale
Nessun dato