Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Advancing nucleosynthesis predictions with modern supernova simulations

Projektbeschreibung

Verbesserte Modelle zur Untersuchung chemischer Elemente in Supernovaexplosionen

Kernkollaps-Supernovae sind dramatische Explosionen von Riesensternen am Ende ihrer Entwicklung, bei denen Neutronensterne und schwarze Löcher entstehen. Sie zählen zu den energiereichsten Phänomenen im Universum. Zudem spielen sie eine entscheidende Rolle für unser Verständnis der chemischen Zusammensetzung des Universums und sind ideale Laboratorien für die Untersuchung von Neutrinos und Teilchenphysik. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen geförderte Projekt NUC4SIM zielt darauf ab, moderne Modelle zur Vorhersage der Zusammensetzung von Supernovae zu entwickeln, wobei die Sterne nicht als sphärisch symmetrische 1D-Körper behandelt werden. Stattdessen werden die Forschenden dreidimensionale Berechnungen nach dem Grundbegriff durchführen, um die Zusammensetzung der Explosionsauswürfe genauer zu untersuchen. Darüber hinaus werden die Auswirkungen von Neutrino-Emissionsasymmetrien und Neutrino-Flavour-Umwandlungen unter die Lupe genommen.

Ziel

Core-collapse supernova (CCSN) explosions mark the end of the life of stars heavier than 10 times the mass of our sun, they play a crucial role for our understanding of the chemical composition of the universe and they are ideal laboratories for effects of neutrino and particle physics. Current research in astrophysics, astronomy and cosmochemistry that requires theoretical CCSN models still, however, relies predominantly on one-dimensional, i.e. spherically symmetric parameterized calculations. This project aims at advancing the state-of-the-art by calculating the composition of CCSN material based on the most recent, first-principles 3D simulations and by providing the results to the community in accordance with FAIR data management principles. The researcher's background in nuclear and neutrino physics will also allow him to study the implications of uniquely multi-dimensional asymmetries in the neutrino emission and the consequences of neutrino flavor conversions, a quantum effect that changes the particles' spectra, for nucleosynthesis, both of which have never been explored and may lead to observational signatures. To achieve the goals, a new and innovative framework for nucleosynthesis calculations at the Max-Planck Institute for Astrophysics in Garching will be developed, based on an open-source reaction network code, which the researcher has contributed to and that he will apply to unique cutting-edge models. The fellow will obtain in-depth knowledge about supernovae and learn state-of-the-art techniques from the world-class team of Prof. Janka and apply them. He will broaden the scope of his work, complemented by a career development plan, training courses and coaching as well as detailed dissemination and public outreach plans to maximize the impact of the project's outcome. The completion of the project will allow the fellow to become a mature and independent scientist, well-recognized in his field of research.

Koordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Netto-EU-Beitrag
€ 189 687,36
Adresse
HOFGARTENSTRASSE 8
80539 Munchen
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
Keine Daten