Descrizione del progetto
Sfruttare l’effetto elettrocalorico per un raffreddamento più efficiente
Il raffreddamento è parte integrante di ogni processo industriale, poiché il calore generato dalle apparecchiature può influire negativamente sulle prestazioni e sulla produzione. Gli attuali metodi industriali di raffreddamento presentano notevoli svantaggi, ovvero costi elevati, scarsa efficienza e impatti ambientali. I metodi di raffreddamento basati sull’effetto elettrocalorico, attraverso cui un materiale mostra una variazione di temperatura reversibile con l’applicazione di un campo elettrico, rappresentano un’alternativa promettente.Il progetto ElectroCool, finanziato dal programma di azioni Marie Skłodowska-Curie, si propone di eliminare gli ostacoli legati al raffreddamento elettrocalorico: il basso intervallo di temperatura, la breve resistenza alla fatica e l’applicazione di tensione elevata. L’obiettivo è realizzare il primo dispositivo di rigenerazione elettrocalorico che presenti un intervallo di temperatura elevato e una lunga durata alla fatica, fornendo così una soluzione di raffreddamento efficiente ed ecocompatibile.
Obiettivo
Cooling accounts for 17 % of total global electricity consumption. Vapor compression cooling dominated the markets, which
uses refrigerants that can leak to the environment and exhibits low efficiency. By contrast, cooling based on an electric-field
driven change in temperature of certain materials, i.e. the electrocaloric (EC) effect, promises an environmentally-friendly
technology with high efficiency. However, three key obstacles have prevented EC cooling from becoming commercially
relevant: small temperature span, low fatigue life, and high applied voltage.
This project has an ambitious goal of gaining insight into a regenerative EC cooler, which will enable the design and
fabrication of the first regenerative EC device exhibiting a large temperature span with long fatigue life. Performance targets
include a temperature span of 20 K, a fatigue life of 10000 cycles, and a low applied voltage. The research is organized into
three work packages: (1) advanced material characterization, (2) high-fidelity system modelling, and (3) demonstration of a
high-performance demonstrator. To achieve this challenging goal, a strong collaboration will take place between three
leading institutions, i.e. the Technical University of Denmark, the University of Cambridge, and the University of Barcelona.
The applicant is currently at forefront of international advances in developing regenerative cooling technologies, with
internationally recognized awards, 24 peer-reviewed publications, and 11 innovation patents.
The project will demonstrate a new concept of a robust, high performance electrocaloric cooler, which is expected to
transform the current cooling technology to the new one that is environmentally friendly and efficient. A timely award of the
Marie Skłodowska-Curie Fellowship will provide the applicant the necessary resources and access to expertise to make
rapid progress in this emerging research area and become an independent researcher, ready to compete globally.
Parole chiave
Programma(i)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Meccanismo di finanziamento
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinatore
2800 Kongens Lyngby
Danimarca