Description du projet
Rendre les capteurs suffisamment intelligents pour une l’Europe plus verte et plus numérique
L’UE a amorcé une ambitieuse transition verte et numérique, à laquelle contribue la technologie des capteurs intelligents. Essentiellement utilisés dans les secteurs de l’aérospatiale, de l’aviation, de la défense, de l’industrie et de l’agriculture, les capteurs intelligents sont amenés à jouer un rôle crucial dans la nouvelle ère européenne verte et numérique, et ce en dépit des défis rencontrés. Par exemple, bien qu’il soit possible d’extraire des informations des données de capteurs, cette opération ne permet pas à elle seule de concevoir des solutions destinées aux applications grand public et industrielles. Dans ce contexte, le projet SEA2Learn, financé par l’UE, mettra au point des mécanismes efficaces du point de vue énergétique et fonctionnant en temps réel qui permettront d’adapter les capacités d’inférence de capteurs intelligents aux ressources limitées sur la base des stimuli émanant de leur environnement immédiat.
Objectif
Smart Sensors are key components for the upcoming Green and Digital European era. Recently, novel emerging electronics components – such as high energy-efficient many-core application processors featuring a power consumption of few tens of mWs – have enabled high-accurate on-device inference capabilities, i.e. Deep Learning inference, to extract high-level information from sensor data. However, this technology improvement is not sufficient to ensure robust solutions suitable for consumer and industrial applications. The main issue comes from the wide variety in real-world test conditions and, consequently, the lack at design-time of representative (labelled) sensor data, needed to train DL inference networks. For this reason, the currently used “train-once-and-deploy-everywhere” design process for edge intelligence has proved to be weak, even after an endless cyclic procedure involving data collection, model training and in-field testing.
This limitation is addressed by the SEA2Learn project by developing energy-efficient and real-time mechanisms to adapt the inference capabilities of resource-constrained smart sensors based on the stimulus from the surrounding environment. The proposed strategy, which is unprecedent in this domain, aims at placing in the same training loop multiple smart sensor nodes that interact with a Learning Agent. The latter will leverage a new class of lightweight methods belonging to the Continual Learning (CL) domain operating on unlabelled multi-sensor data. Thanks to the envisioned SEA2Learn framework, the embedded intelligence can adapt over time based on real-world data, making the design process more robust and 10-100x faster than today. To realize this vision, the fellow’s expertise in HW/SW design for embedded machine learning will be complemented by the Continual Learning knowledge of the hosting research group at KU Leuven and enriched by a tight collaboration with an SME that manufactures IoT platforms for edge computing.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- ingénierie et technologie génie électrique, génie électronique, génie de l’information ingénierie électronique capteurs
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
3000 LEUVEN
Belgique
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.