Descripción del proyecto
Una válvula nanofluídica rápida permite obtener imágenes de las interacciones entre moléculas únicas similares a las «in vivo»
La obtención de imágenes de las actividades de moléculas únicas actualmente requiere modificaciones químicas o la inmovilización de la superficie para mejorar la visualización. Sin embargo, las aberraciones bioquímicas y cinéticas dificultan la comprensión de las funciones y los procesos «in vivo». Con el apoyo de las Acciones Marie Skłodowska-Curie, el equipo del proyecto RAVASI mejorará las capacidades de su configuración de microscopía óptica de dispersión de nanofluidos revolucionaria con el objetivo de facilitar el proceso de obtención de imágenes. En la actualidad, las moléculas no pasan suficiente tiempo en el canal de nanofluidos para lograr un número de interacciones estadísticamente relevantes. Una válvula nanofluídica rápida permitirá el control del confinamiento y la liberación de las moléculas pertinentes para superar este obstáculo.
Objetivo
A major challenge in biomolecular research is the investigation of biomolecular interaction at single-molecule level. Biomolecules possess heterogeneities of high physiological relevance that can only be unravelled with single-molecule tools. All current single-molecule imaging methods, however, require chemical modifications, such as fluorescent labelling or immobilization onto a surface, which might alter the biomolecule’s natural behaviour.
Recently, I have developed a ground-breaking optical microscopy method – Nanofluidic Scattering Microscopy (NSM) – whose unprecedented resolution enabled me to bypass those limitations and to image individual small proteins in free motion without any label. Despite these attractive attributes, in its current form, NSM does not allow for quantitative study of interaction kinetics between individual molecules. Due to the inherently fast Brownian motion, the time that a molecule spends on average in the optically probed volume – a nanofluidic channel – is substantially shorter than the time required to record a statistically relevant number of association and dissociation events.
In this project, we will develop an essential nanoscopic component – a rapid nanofluidic valve – that will enable to confine and release interacting biomolecules to and from the nanofluidic volume. The nanofluidic valves will be based on the principles of thermo-responsive polymer hydrogel in combination with nanoplasmonic heating. The integration of the nanofluidic valves with NSM will enable to track evolution of individual biomolecules at single molecule level, without the need of chemical modifications and in conditions that mimic an in-vivo state.
The project will deliver a unique bioanalytical tool that will make key contributions to the fundamental understanding of biomolecular interactions, which is needed in basic research as well as in the pharmaceutical industry.
Ámbito científico
Palabras clave
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinador
182 21 Praha 8
Chequia