Description du projet
Des matériaux 2D prometteurs pour catalyser le craquage de l’eau et améliorer la production d’hydrogène
Les piles à hydrogène sont amenées à devenir l’une des principales solutions d’énergie renouvelable de l’avenir. Si le craquage de l’eau constitue le moyen le plus simple d’obtenir de l’hydrogène, la réaction n’est pas encore économiquement réalisable. En raison de leur excellente activité catalytique, les matériaux bidimensionnels (2D) pourraient améliorer de manière rentable la production d’hydrogène à partir du craquage de l’eau. Financé par le programme Actions Marie Skłodowska-Curie, le projet EC-MAXene exploitera les MXenes, une classe de composés inorganiques 2D abondants et stables. Les chercheurs utiliseront des méthodes basées sur l’électrochimie et des produits chimiques respectueux de l’environnement pour synthétiser les MXenes. Ils évalueront les techniques proposées en termes de rendement et mettront en corrélation les caractéristiques structurelles et électrochimiques des MXenes.
Objectif
To minimize the consequences of climate change, stopping greenhouse gas emissions and thus decarbonization of the energy supply chain is crucial. A highly promising solution is the utilization of fuel cells, which require hydrogen for energy generation. The supply of hydrogen by green technologies like water splitting is not economically feasible yet. To resolve this issue, cheap and efficient catalysts to drive this reaction are required. In the recent years, 2D materials moved in the focus of research as some of them show excellent catalytic activity to support the electrochemical splitting of water to obtain hydrogen.
Among the vast field of 2D materials, MXenes are potential earth-abundant candidates with high stability and a broad range of potential applications, including the catalysis of water splitting. To date, 30 different MXenes have been synthesized, while more than 100 of them are predicted. However, established protocols use hazardous chemicals for the synthesis. Among the different methods, electrochemical etching of MAX phases to MXenes has the highest potential for an environmental approach. Thus, the main effort of this project is to develop electrochemistry-based synthesis routes for MXenes using environmentally friendly chemicals. The developed techniques will be evaluated in terms of yield and the structural and electrochemical characteristics of MXenes will be correlated.
The etching process will be further optimized using scanning electrochemical microscopy. The technique enables the analysis of the localized electrochemical activity and the electrocatalytic activity towards the hydrogen evolution reaction. This will provide a deeper knowledge about the etching process in two regards: The minimum time required to achieve full conversion of MAX phase to MXene on an electrode surface can be determined, and local differences in catalytic activity can be spotted and correlated with structural and chemical deviations.
Champ scientifique
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructures
- natural sciencesphysical sciencesopticsmicroscopy
- natural scienceschemical sciencescatalysis
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
Mots‑clés
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régime de financement
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinateur
602 00 BRNO STRED
Tchéquie