Project description
Saltwater for greener concrete production
Freshwater reserves worldwide have been facing steep declines. For this reason, novel solutions that reduce freshwater use are necessary. However, this simple solution is a big challenge for the concrete industry. Production requires large amounts of freshwater to mix and cure the concrete. And with cement production increasing rapidly, a solution is urgently needed. The Marie Skłodowska-Curie Actions StARS project offers a solution. It plans to develop an innovative strategy for producing concrete that utilises salt water, which is in abundant supply, and aluminium reinforcement to reduce both concrete production costs, freshwater consumption, and CO2 emissions, assisting in maintaining the EU at the front line of sustainability.
Objective
Freshwater is a very precious natural resource and it is widely reported that the world reserve of freshwater is fast depleting. This problem is becoming more complex due to development in infrastructure which is demanding more quantity of concrete and pressurizing freshwater resources. Focusing on this issue, this project utilizes seawater for concreting (mixing + curing) to conserve freshwater resources. But, the corrosion of steel reinforcement is inevitable with the use of seawater (due to chloride in the seawater) in concrete. Therefore, noncorrosive aluminium reinforcement will be used in this project to minimize the risk of corrosion. An invisible layer of Al2O3 on the surface of aluminium protects it from corrosion. Although, it is considered that the high alkalinity of concrete degrades this outer layer and corrode the aluminium. In this regard, the use of Supplementary Cementitious Materials (SCMs) as a partial replacement of cement is found beneficial. Due to the pozzolanic activity, SCMs consume Ca(OH)2 formed by cement hydration and keep the pH so low that the concrete can be reinforced with aluminium bars even with seawater. In this project, calcined clay, natural pozzolanic material will be used as an SCM in concrete. Hence this project focuses on the possibilities of using seawater in aluminium reinforced concrete and reducing the burden of utilising freshwater. In addition, the use of calcined clay will reduce the cement content which leads to minimise the CO2 emission in environment and ultimately this project will produce a more sustainable concrete for the future. Moreover, the present research capability of researcher (limited to basic assessment of non-reinforced concrete) will be boosted by the assessment of aluminium reinforced concrete for corrosion, carbonation and shrinkage in conjunction with micro-scale analysis. The project results will contribute to Europe's positioning at the forefront of sustainability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7491 Trondheim
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.