Skip to main content

Cobalt and Lithium speciation, toxicity, and Bacterial community Regulations at the sediment-water-Interface

Objective

In the EU, transport is responsible for a quarter of greenhouse gas emissions. For the transition to a climate neutral economy, battery development and production strategies are thus important. By 2030, the EU expects an increased requirement of 18 times more lithium and 5 times more cobalt. These elements are released into the aquatic environment by mining processes and wastewater discharge. In aquatic systems, sediments are important and dynamic sinks or sources for such elements, depending on varying environmental conditions. The chemical state, bioavailability, and toxicity of these elements in aquatic systems is highly influenced by environmental parameters such as pH and temperature, which in turn are influenced by climate change. The goal is to investigate the toxicity of lithium and cobalt in aquatic systems under different environmental conditions. This will be addressed in 3 research objectives: 1) Investigation of the impact of temperature and pH on the distribution and chemical characteristics of lithium and cobalt within aquatic systems 2) Analysis of toxic effects of lithium and cobalt to zebrafish 3) Evaluation of lithium and cobalt related microbial community changes within the sediment. To address these objectives, we will perform a long-term exposure with zebrafish to selected sediments spiked with lithium and cobalt in an aquarium system capable of monitoring and regulating different water parameters. The toxicity will be determined with the zebrafish embryo toxicity test. Gene-expression analysis will reveal sub-lethal toxic effects of the selected elements. Bioaccumulation and content of lithium and cobalt in water and sediment will be quantified by ICP-MS. Changes in the sediment microbial community will be investigated by metagenome fingerprinting. With this interdisciplinary holistic approach we aim to improve environmental risk assessment of sediments contaminated with lithium and cobalt, particularly in regard to climate change.

Coordinator

OREBRO UNIVERSITY
Net EU contribution
€ 206 887,68
Address
Fakultetsgatan 1
70182 Orebro
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Örebro län
Activity type
Higher or Secondary Education Establishments
Other funding
No data

Partners (1)

Bundesanstalt fuer Gewaesserkunde
Germany
Net EU contribution
No data
Address
Am Mainzer Tor 1
56068 Koblenz

See on map

Region
Rheinland-Pfalz Koblenz Koblenz, Kreisfreie Stadt
Activity type
Research Organisations
Other funding
No data