Descripción del proyecto
Estudio de investigación sobre la dinámica de los iones rápidos en los reactores de fusión
Los tokamaks son un tipo de dispositivo de confinamiento magnético utilizados en los reactores para producir energía de fusión termonuclear controlada. Uno de los principales desafíos es mantener el plasma lo suficientemente caliente para que se produzca la fusión, al tiempo que se evita que las paredes del tokamak se fundan por el calor. A fin de evitar posibles daños, los tokamaks deben funcionar sin inestabilidades perjudiciales en los bordes. El comportamiento de los iones energéticos tiene una importancia fundamental para el estudio de los procesos de fusión en los reactores. En el proyecto FICOP, financiado por las Acciones Marie Skłodowska-Curie, se estudiarán los mecanismos físicos fundamentales que sustentan las relaciones entre las inestabilidades en los bordes y el confinamiento de los iones rápidos. Además, los investigadores estudiarán qué condiciones favorecen la fuga de iones en los tokamaks.
Objetivo
The project presented here deals with Fast-Ion Confinement OPtimization (FICOP) in magnetically confined fusion reactors. The goal of the project presented here is the characterization of the effect of edge instabilities on fast-ion confinement and the understanding of the physical mechanisms behind this interaction, as well as to experimentally explore the conditions upon which ion runaway can take place in tokamaks by studying the behaviour of fast-ions in the current ramp-up and ramp-down phases, disruptions, and sawtooth crashes. To fulfill these objectives, novel and cutting-edge data analysis techniques will be developed to be applied to fusion diagnostics, including integrated tomography techniques and deep learning.
The results of this project are expected to have a direct impact on the fusion community. The problem of power exhaust in tokamaks mainly focuses on the power dissipation through the divertor plates. Therefore, the limits to tokamak operation are set based on the heat fluxes that the materials in the divertor plates can tolerate. However, an additional constraint might come from the fast-ion heat loads due to edge instabilities that may deposit power not only on the divertor plates but also in the first wall of the main chamber, often in localized areas. The results of this project may help to assess weather fast-ion heat loads to the main chamber first wall due to edge instabilities can pose an additional constraint to the operational regime of a tokamak fusion reactor, or eventually impact its design by the addition of reinforced structures. The experimental results of the project will also be used to benchmark the state-of-the-art codes that the fusion community uses to make projections towards future machines. If successful, the benchmark will strengthen our confidence in our predicting capabilities, while if unsuccessful, the results will motiv
Ámbito científico
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinador
41004 Sevilla
España