Projektbeschreibung
Studie untersucht die Dynamik schneller Ionen in Fusionsreaktoren
Tokamaks sind eine Art magnetische Einschlussvorrichtung, die in Reaktoren zur Erzeugung kontrollierter thermonuklearer Fusionsenergie eingesetzt wird. Eine zentrale Herausforderung besteht darin, das Plasma heiß genug zu halten, damit die Fusion vonstatten gehen kann, und gleichzeitig zu verhindern, dass die Wände des Tokamaks durch die Hitze zu schmelzen beginnen. Um mögliche Schäden zu vermeiden, müssen Tokamaks ohne abträgliche Randinstabilitäten arbeiten. Das Verhalten energetischer Ionen ist von grundlegender Bedeutung für die Untersuchung von Fusionsprozessen in Reaktoren. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt FICOP wird die physikalischen Mechanismen untersuchen, die der Wechselwirkung zwischen Randinstabilitäten und dem Einschluss schneller Ionen zugrunde liegen. Außerdem werden die Forschenden der Frage nachgehen, welche Bedingungen das Entweichen von Ionen in Tokamaks begünstigen.
Ziel
The project presented here deals with Fast-Ion Confinement OPtimization (FICOP) in magnetically confined fusion reactors. The goal of the project presented here is the characterization of the effect of edge instabilities on fast-ion confinement and the understanding of the physical mechanisms behind this interaction, as well as to experimentally explore the conditions upon which ion runaway can take place in tokamaks by studying the behaviour of fast-ions in the current ramp-up and ramp-down phases, disruptions, and sawtooth crashes. To fulfill these objectives, novel and cutting-edge data analysis techniques will be developed to be applied to fusion diagnostics, including integrated tomography techniques and deep learning.
The results of this project are expected to have a direct impact on the fusion community. The problem of power exhaust in tokamaks mainly focuses on the power dissipation through the divertor plates. Therefore, the limits to tokamak operation are set based on the heat fluxes that the materials in the divertor plates can tolerate. However, an additional constraint might come from the fast-ion heat loads due to edge instabilities that may deposit power not only on the divertor plates but also in the first wall of the main chamber, often in localized areas. The results of this project may help to assess weather fast-ion heat loads to the main chamber first wall due to edge instabilities can pose an additional constraint to the operational regime of a tokamak fusion reactor, or eventually impact its design by the addition of reinforced structures. The experimental results of the project will also be used to benchmark the state-of-the-art codes that the fusion community uses to make projections towards future machines. If successful, the benchmark will strengthen our confidence in our predicting capabilities, while if unsuccessful, the results will motiv
Wissenschaftliches Gebiet
Programm/Programme
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsKoordinator
41004 Sevilla
Spanien